Electron-phonon interaction under extreme pressures Effects on materials properties from first-principles calculations

Roman Lucrezi

Institute of Theoretical and Computational Physics Graz University of Technology, Austria

> DocDay 2022 Mon., February 28

Outline

Theory and methods

3 Transition metal chalcogenides

- Phases in the Nb-S system
- An anharmonic superconductor: Nb₂S
- TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

4 Ternary hydride systems

- XYH_8 template
- Phonons and anharmonicity
- Superconductivity

First-principles calculations / DF1

- "Schrödinger equation and the periodic table"
- computationally efficient implementation: density functional theory
- limitations in ee correlations
- no phonons in basic DFT, as Born-Oppenheimer is assumed

Lattice dynamics

- give rise to topical phenomena like superconductivity (SC) and charge-density wave (CDW) formation
- affect the thermodynamic stability of a material or a certain phase

Extreme pressure

- directly affects the lattice
- enthalpic term becomes more important
- high pressure phases largely unexplored

Theory and methods

Density functional perturbation theory (DFPT)

Basic idea: Taylor expansion around the equilibrium structure in terms of small atomic displacements

$$E_{
m tot}(\Delta au) pprox E_{
m tot}^{(0)} + 0 + rac{1}{2}\sum\sumrac{\partial E_{
m tot}}{\partial au\partial au'}\Delta au\Delta au'$$

Harmonic approximation: Truncating the series after the second order DFPT offers an efficient way to obtain these derivatives (= force constants) from first principles.

$$\frac{\partial E_{\rm tot}}{\partial \tau \partial \tau'} = \int d\mathbf{r} \frac{\partial n(\mathbf{r})}{\partial \tau} \frac{\partial v_{\rm ext}(\mathbf{r})}{\partial \tau'} + \int d\mathbf{r} n(\mathbf{r}) \frac{\partial^2 v_{\rm ext}(\mathbf{r})}{\partial \tau \partial \tau'}$$

Density functional perturbation theory (DFPT)

The Fourier transform relates the force constants to phonon frequencies by

$$D_{ au au'}(\mathbf{q})e_{ au m \mathbf{q}} = \omega_{m \mathbf{q}}^2 e_{ au m \mathbf{q}} \qquad ext{ with } D_{ au au'}(\mathbf{q}) \propto \mathcal{F}\left[rac{\partial \mathcal{E}_{ ext{tot}}}{\partial au \partial au'}
ight]$$

Electron-phonon coupling coefficients from interactions of the order $g \cdot c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}} \left(b_{\mathbf{q}} + b_{-\mathbf{q}}^{\dagger} \right)$ can easily be obtained by the knowledge of $\partial n(\mathbf{r}) / \partial \tau$.

Important derived quantities:

Eliashberg or *ep* spectral function $\alpha^2 F(\omega) \propto \sum \int g_{\mathbf{q}\nu\mathbf{k}} \delta(\epsilon_{\mathbf{q}i} - \epsilon_{\mathsf{F}}) \delta(\epsilon_{\mathbf{k}+\mathbf{q}j} - \epsilon_{\mathsf{F}})$ *ep* coupling strength $\lambda = 2 \int d\omega \alpha^2 F(\omega)/\omega$

Thermodynamics

Setting: crystalline solids in the ground state with applied external pressure: isothermal-isobaric ensemble with $T = 0 \text{ K} \rightarrow$ isoenthalpic-isobaric ensemble minimizing the enthalpy H = U + pV.

Different compositions: thermodynamically stable phases $\pi_{x,y}$ are determined via their enthalpy of formation

$$\Delta H(\pi_{x,y}) = H(\pi_{x,y}) - \frac{xH(\pi_{1,0}) + yH(\pi_{0,1})}{x + y}$$

with respect to the pure elemental phases $\pi_{1,0}$ and $\pi_{0,1}$, where

$$H(\pi_{x,y}) = \frac{E_{\text{tot}}(\pi_{x,y})}{N} + p \frac{V(\pi_{x,y})}{N}.$$

The sets of phases that are additionally stable against decomposition into neighbouring phases form so-called *convex hulls*.

Strategy and computational methods

Evolutionary structure search^{1,2}

- generate possible candidates
- thermodynamic stability via fast DFT calculations

High accuracy DFT³

- verify phase diagram
- equilibrium crystal structures
- electronic properties

Advanced DFT-based methods

- DFPT³, ME theory⁴, multidim. fully anharmonic phonon analysis
- phononic properties, *ep* coupling, SC

 $^1\text{USPEX},$ A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006)

²A. O. Lyakhov et al., Comput. Phys. Commun. 184, 1172 (2013)

³QE, P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009)

⁴EPW, S. Poncé et al., Comput. Phys. Commun. 209, 116 (2016)

Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

Transition metal chalcogenides $(TMC)^1$

¹The following results were published in

R. Lucrezi and C. Heil, J. Phys.: Condens. Matter, (2021), "Superconductivity and strong anharmonicity in novel Nb-S phases" or taken from ongoing unpublished research.

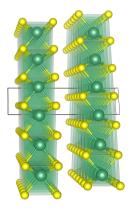
Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

Motivation for TMCs

ТМС

Compounds consisting of a transition metal and a chalcogen $(TM_xC_y, C = S, Se, Te)$

A diverse material class

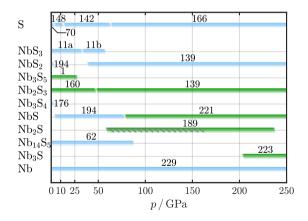

- group-4/6 TMCs: semiconducting phases used in photovoltaics and electronics, indirect-to-direct band gap transition
- group-5 TMCs: metallic phases exhibiting SC and CDW order

Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

Motivation for TMCs

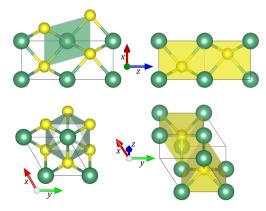
Known phases

- many layered structures
- mainly TMDs in group 4 and 5
- 1D and 2D materials (beyond graphene)
- changing properties with intercalation, stacking order, doping (cathodes, solid lubricants, electrocatalysts)
- geometric constraint promoting *ep* processes like SC and CDW (NbS₂, NbSe₂, NbSe₃)
- pressure significantly affects layers
- complete phase diagrams largely unexplored for high pressures



Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

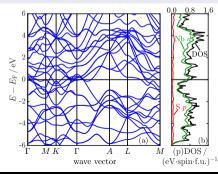
Phase diagram of the Nb-S system

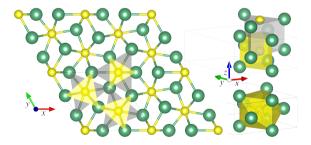

Insights

- many different phases and stoichiometries
- stable pressures for known phases (shown in sky blue)
- new material discoveries (in green)
- metallic binary phases with low *ep* coupling
- distinct geometric building blocks

Phases in the Nb-S system An anharmonic superconductor: Nb_2S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

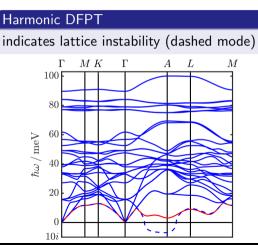
Characteristic crystal structures

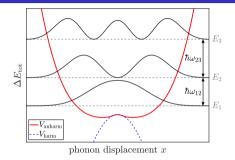

Main geometric building	blocks
 octahedra 	
 trigonal prisms 	$bracket{low } p$
 CsCl-like cubes 	high <i>p</i>


Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

An interesting new material: Nb_2S

Electronic properties


- strong 3D character
- high Nb d contribution around $E_{\rm F}$



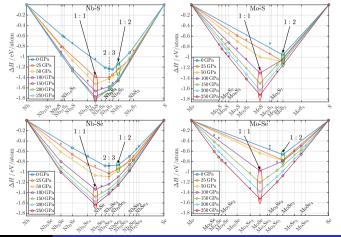
Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se

Phonons and ep coupling in Nb₂S

Fully anharmonic analysis

- dynamic stability from 175 to 250 GPa
- strong *ep* coupling ($\lambda \approx 2.5$)
- SC up to 25 K (aniso. ME)

Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se


Ongoing work in the systems Mo-S, Mo-Se, Nb-S, Nb-Se

Convex hull

Convex hulls of enthalpy of formation show stable (circles) and metastable (crosses) phases

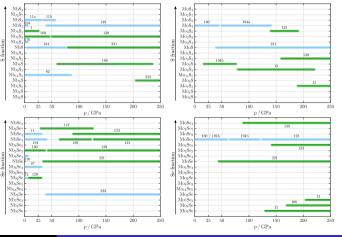
Insights

- LP focus on 1:2, prismatic/octahedral bonding
- HP focus on 1:1, cubic bonding
- TM governs the overall trend

Roman Lucrezi

Electron-phonon interaction under extreme pressures

Phases in the Nb-S system An anharmonic superconductor: Nb₂S TMC overview: Mo-S, Mo-Se, Nb-S, Nb-Se


Ongoing work in the systems Mo-S, Mo-Se, Nb-S, Nb-Se

Phase diagram

p-x phase diagrams show all thermodynamically stable phases indicating the symmetry

Insights

- known phases in sky blue
- new discoveries in green
- HP Nb: simple cubic stacking
- HP Mo: complex stacking

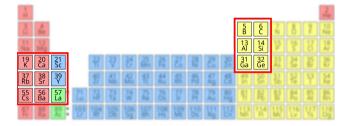
Roman Lucrezi

Electron-phonon interaction under extreme pressures

XYH₈ template Phonons and anharmonicity Superconductivity

Ternary hydride systems¹

¹The following results were taken from the work

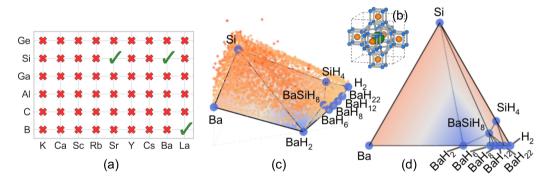

R. Lucrezi, S. Di Cataldo, et al., subm. to Npj Comput. Mater. (2022), "In-silico synthesis of novel lowest-pressure high-T_c ternary superhydrides" preprint available at arXiv: 2112.02131 [cond-mat.supr-con], (2021).

XYH₈ template Phonons and anharmonicity Superconductivity

The hydride rush

Superhydrides

Materials incorporating a huge amount of hydrogen in their crystal structure

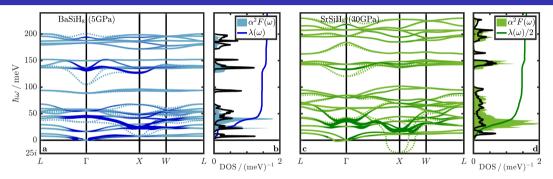


Background

- $\bullet\,$ Conventional high- ${\cal T}_c$ SC like H_3S and LaH_{10} started a hydride rush
- $T_{\rm c} > 200\,{\rm K}$ but pressure $> 150\,{\rm GPa}$
- (thermo)dynamically unstable at lower pressures due to light H atoms
- binary hydrides mostly explored

XYH₈ template Phonons and anharmonicity Superconductivity

The XYH_8 template: inspired by LaBH₈


Strategy

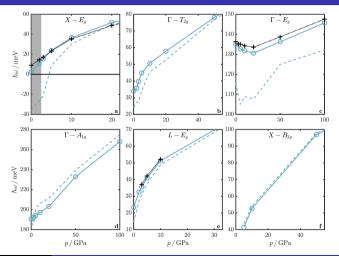
- browse the periodic table in the neighbourhood of La and B
- determine dynamically stable phases, calculate thermodynamic and SC behaviour

Roman Lucrezi Electron-phonon interaction under extreme pressures

XYH₈ template Phonons and anharmonicity Superconductivity

Phonons

Phononic behaviour

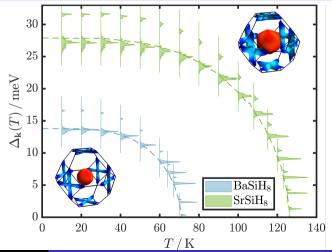

- high electron-phonon coupling
- strong anharmonicity in many modes

XYH₈ template Phonons and anharmonicity Superconductivity

Anharmonic corrections

Frozen phonon approach

- harmonic (DFPT) result as dashed lines
- PES for each mode as V(x) in the SEQ (solid lines)
- 2D and 3D checks if approach is appropriate (crosses)



XYH₈ template Phonons and anharmonicity Superconductivity

Superconducting gap $\Delta(T)$

Migdal-Eliashberg theory

- SC state from many-body calculations
- two-gap superconductors BaSiH₈: \sim 70 K, \sim 3 GPa SrSiH₈: \sim 125 K, \sim 30 GPa
- distinct distribution on the Fermi surface

Theory

- DFPT: phonons and *ep* quantities
- thermodynamics and enthalpy of formation
- computational methods and strategy

TMCs

- layered structures
- distinct buildings blocks
- new phase discoveries
- $\bullet\,$ superconductivity up to $25\,\text{K}$

Ternary hydrides

- XYH₈ template
- low-pressure stability search
- two new compounds $BaSiH_8$, $SrSiH_8$
- strong anharmonicity
- low-p and high-T superconductivity

Related publications

R. Lucrezi and C. Heil, J. Phys.: Condens. Matter, (2021) "Superconductivity and strong anharmonicity in novel Nb-S phases" available at doi.org/10.1088/1361-648X/abda7a

R. Lucrezi, S. Di Cataldo, et al., subm. to Npj Comput. Mater. (2022) "In-silico synthesis of novel lowest-pressure high- T_c ternary superhydrides", preprint available at arXiv: 2112.02131 [cond-mat.supr-con], (2021).

Follow-up questions at lucrezi@tugraz.at

