

Intensity Corrections in Grazing Incidence X-ray Diffraction

∧ q_z

 $\lambda/2\pi \dot{q}$

 $000 / \omega$

Fabian Gasser,^a Josef Simbrunner,^b Hans-Georg Steinrück,^c Roland Resel^a

^aInstitute of Solid State Physics, Graz University of Technology, Austria ^bDepartment of Neuroradiology, Vascular and Interventional Radiology, Medical University Graz, Austria ^cDepartment of Technical Chemistry, Paderborn University, Germany

Motivation	
measured intensity \sim calculated intensity \cdot correction factors	
radiation, measurement type, sample texture	

Grazing Incidence X-ray Diffraction

Performance of x-ray diffraction under very small incidence angles $\alpha_i \sim \alpha_c$. An evanescent wavefield is formed at the surface. This is particularly useful for the investigation of thin films.

GIXD with sample rotation access to 3D reciprocal space

- \rightarrow investigation of textured samples
- \rightarrow improve statistics by averaging over 360° rotation

Lorentz Correction

Describes how quick a reciprocal lattice point moves through the Ewald sphere. In literature different corrections are reported:

 $1/L = \cos(\alpha_i) \sin(\theta_f) \cos(\alpha_f)$ In-plane Diffraction¹:

Rotating Single-Crystal²: $1/L = sin(2\Theta)$

 $1/L = sin^2(\Theta)cos(\Theta)$ 3D Powder²:

None of these factors lead to good agreement between measurement and calculations.

Polarization Correction

Required since only the field component perpendicular to the scattering direction contributes¹.

 $\xi > 94.7\%$

100 150

50

Measurement of the Polarization Coefficient

 $\lambda/2\pi \mathbf{k}$

 (2θ)

 $\lambda/2\pi \vec{k}_0$

Conclusion

With knowledge on the polarization coefficient of $\xi > 94.7\%$ an effective polarization correction can be performed. Measurements show that the Lorentz correction strongly depends on the sample texture. For both 3D and 2D powder performing a proper peak integration in spherical coordinates (with a corresponding Jacobian) leads to very good agreement between measured and calculated peak intensity.

Literature

¹ Smilgies, D.-M. Geometry-independent intensity correction factors for grazing-incidence diffraction. *Review of* Scientific Instruments 73, 1706–1710 (2002).

² Cullity B. D., Stock S. R. in Elements of X-Ray Diffraction (Pearson, 2014)

³ http://gisaxs.com/index.php/Integrated_intensity

⁴ Sulyanov, S., Dorovatovskii, P. & Boysen, H. A simple approach to determine the polarization coefficient at synchrotron radiation stations. Journal of Applied Crystallography 47, 1449–1451 (2014).

⁵ Schrode, B. et al. GIDVis: a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations. Journal of Applied Crystallography 52, 683-689 (2019).

This work is part of the Project 'MOFPoly'

Der Wissenschaftsfonds.

TU Graz – Institute of Solid State Physics 8010 Graz, Petersgasse 16, Austria, Tel.: +43 316 873-8461 if@tugraz.at

