
Introduction
• Helium atom scattering (HAS) is a purely surface sensitive, non-destructive 

technique that can be used to probe the properties of a material surface.
• Structural characteristics that can be investigated include the lattice constant, 

the linear thermal expansion coefficient (TEC), and the electronic corrugation.
• The technique can also be used to access intrinsic characteristics of the 

materials such as the electron-phonon (e-ph) coupling constant, λHAS.
• We investigate these properties for samples of epitaxially grown bilayer 

graphene (BLG) bound to various intermediate, intercalated substances atop a 
silicon carbide (SiC) substrate.

Experimental Setup
• Helium (He) atoms are accelerated via supersonic expansion through a 

temperature-controlled nozzle and collimating skimmer, generating a 
monochromatic ( Τ∆𝐸

𝐸 ≈ 2%) He beam.
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Surface Structure
• He beam diffraction patterns are generated according to the Laue condition.
• Using the angle of the first order diffraction peaks the reciprocal lattice 

constant of the graphene surface can be calculated.
• Taking the lattice constants at varying surface temperatures allows us to 

calculate the linear thermal expansion coefficient. These values are averaged 
across multiple He beam energies.
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• BLG exhibits a negative thermal expansion (NTE) which causes strain and 
potential slips or buckling when bound to substrates with positive thermal 
expansion such as SiC. [2]

• Slips and buckling are difficult to observe within our experiments due to the 
limited number of temperatures measured.

Electronic Corrugation
• The electronic corrugation is generated using purely elastic scattering, close-

coupling (CC) calculations.
• The electronic corrugation of a surface influences the fraction of the incident He 

beam that is scattered into diffractive channels, and thus the intensity of the 
diffraction peaks.

• The peak-to-peak corrugations of the BLG/BL/SiC and BLG/Ga/SiC are 
relatively standard at 0.14 Å and in good agreement with BLG atop a Ru(001) 
surface at 0.15 Å. [3]

• The hydrogenated sample shows a more significant corrugation at 0.23 Å, 
surpassing even bulk highly-oriented pyrolytic graphite (HOPG) at 0.21 Å. [3]

• It is also notable that the corrugations become substantially stronger once the 
surfaces have been cooled, it is possible this is due to the reduced availability of 
phonon modes to facilitate inelastic scattering. 

Electron Phonon Coupling
• As the surface of a material heats up more phonon modes become successively 

available.
• A greater proportion of the incident He beam undergoes inelastic scattering in 

place of elastic scattering.
• This is directly measurable via the thermal attenuation of the specular elastic 

peak intensity.
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• Given that the He beam interacts exclusively with the electron density, and the
exchange of energy occurs via phonon excitation there exists a coupling
between the electrons and phonons described by the following equation,
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• When applied to graphene at an arbitrary temperature, this becomes,
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• 𝜆𝐻𝐴𝑆 has an inverse non-linear relationship with binding strength of the
graphene to the substrate suggesting that intercalated Ga metal or, to a larger
extent, H reduce the strength of the graphene binding.
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• The beam is directed towards a 
sample mounted to a manipulation 
arm.

• The low energy beam (8-13 meV) 
exclusively interacts with the 
electron cloud above the sample, 
without penetrating into the bulk.

• The diffracted beam is detected by 
a quadrupole mass spectrometer 
(QMS).

• There is a fixed angle between the 
He source and the detector, the 
angle of incidence can be adjusted 
by rotating the sample about the Z 
axis.

• 𝜗𝑆𝐷 =  𝜗𝑖 + 𝜗𝑓 = 91.5°

• The samples can be cooled to 113 K 
via a thermal connection to a liquid 
nitrogen reservoir.

• Further details are available in [1].

Sample BLG/BL/SiC BLG/Ga2/SiC BLG/H/SiC Gr/Ni(111)
[5]

Gr/Ru(0001)
[6]

𝜆𝐻𝐴𝑆( ത𝑇) 0.089 0.091 0.100 0.06 0.05

[4]

Sample Lattice Constant (Å) TEC
(× 10−5 K −1)113 K 296 K

BLG/BL/SiC 2.480 2.468 -2.52

BLG/Ga2/SiC 2.470 2.463 -1.37

BLG/H/SiC 2.486 2.472 -3.10
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