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Motivation
• The Auxiliary Master Equation Approach[1] (AMEA) allows to

simulate an impurity in contact with arbitrary environments.
Using the Configuration Interaction[2,3] (CI) approximation
reduces the computation time and allows to increase the
accuracy of the calculation.

Physical and auxiliary
system
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Fig. 1. The upper part depicts the physical system as two semi-infinite chains connected to
the impurity. The one below represents those chains in terms of their density of states.
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Fig. 2. Visualisation of the auxiliary system. The green and blue lines show how the sites are
connected, and correspond to fitting parameters.

• Figure 2 illustrates the Lindblad equation in superfermion
representation[4]. The blue lines represent the unitary part,
and the green ones the disspative part.

• The real system is modelled by the auxiliary one, by recreat-
ing the hybridization function as good as possible[5].

Configuration Interaction
initial state states obtained from a single excitation

Fig. 3. We choose an initial state and add excitations in terms of annihilations and creations.

initial state

from CAS states obtained from a single excitation

Fig. 4. Here we obtain two initial states from our Complete Active Space (orange).

• CASCI/CI keeps the Hilbert space small.

Results

1.5 1.0 0.5 0.0 0.5 1.0 1.5
/

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Im
(G

R
)/

1

=0

/ =1/3

/ =1/2

/ =1

/ =2
/ =4

(a)

NRG
ED, NB = 6
MPS, NB = 16
CI, NB = 8

4 3 2 1 0 1 2 3 4
/

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Im
(

R
)/

1

=0
/ =1/3

/ =1/2

/ =1

/ =2

/ =4

(b)

ED, NB = 6
MPS, NB = 16
CI, NB = 8

10 0 10
/

1.04

1.02

1.00

0.98

Im
(

R
)/

1

10 0 10
/

1.04

1.02

1.00

0.98

Im
(

R
)/

1

Fig. 5. Comparison with MPS (reference)
and ED results.
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Fig. 6. Comparison with NRG (reference)
and ED for equilibrium.
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Fig. 7. Current (lhs) and the respective conductance (rhs) over voltage.

• Good agreement with MPS[6] and NRG[7] results.
• Reproduces physical behaviour for the current.

Outlook
• Use as impurity solver for DMFT.
• Implement natural orbital basis to improve accuracy.
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