

Modelling dynamic effects to determine transport properties in semiconducting MOFs containing 1D pentacene stacks

Robbin Steentjes, Narges Taghizade, Sandro Wieser, Egbert Zojer,

Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.

Semiconducting MOFs?

Metal-Organic Frameworks can be used to **extrinsically control** the arrangement of molecules with respect to each other. In this way, π -conjugated units can be positioned to create materials with **favourable electronic properties**, compared to their traditional organic semiconducting counterparts.

What does that look like?

Exemplary case: a system of **1D stacks of molecules**! This can e.g. be done with pentacene [1] and with tetrathiafulvalene (TTF) [2] linkers.

Impact of distortions of the unit cell

- Upon full relaxation, the Zn paddlewheel structures adopts a reduced symmetry conformation resulting in a massively distorted structure.
- The structure containing **DABCO remains close to orthorhombic**
- This influences the band structure, and, thus, the **effective mass**

Complications

- Stacking Motif: causes unfavourable shift of neighboring pentacene [3] or TTF [4] units.
- **Distorted Structures**: most orthorhombic structures are unstable, heavily distorted structures form instead
- **Dynamic disorder**: torsional vibrations of pentacene linkers hinder transport [1]

Methods

Software: VASP version 6.3.0 DFT functional: PBE [5] DFT-D3 (BJ) [6] VdW correction: NPT run performed with force fields created using VASP's Molecular dynamics: on-the-fly machine learning. [7] Learned at T = 330 K, used at T = 300 K.

Impact of the stacking motif [3]

PBE-calculated frontier bands for the idealized orthorhombic structure (left) and the fully relaxed triclinic structure (right)

- The distortion decreases m* for the paddle system
- it slightly increases m* for the DABCO system

Dynamic disorder (preliminary)

A molecular dynamic simulation is performed at 300K; the effective mass is sampled throughout the trajectory.

Schematic structure of the idealized orthorhombic pentacene MOF [3]

- **Stacking distance determines** π -slip, as the π -distance changes only marginally
- **Electronic coupling can vanish** for a certain π -slip (due to orbital symmetry) [8]
- Hole transport: hindered due to unfavourable stacking of bare Zn paddlewheel nodes

- For now: consider primitive UC \rightarrow consider only Γ -point vibrations
- At 300K, the symmetry of the **DABCO is also reduced**
- m^{*} of paddle is on average almost **twice the static result**!
- m^{*} of DABCO is on average almost half the static result! Mainly due to the shift to a triclinic system.

Conclusions

- Effective mass highly dependent on both static structure, and dynamic disorder
- Spacers expected to boost the carrier mobility in the studied system
- Average m* can be increased or decreased in the dynamic picture, depending on the structure

Outlook

Effective mass as a function of the stacking distance between Zn paddlewheels

Solution: maximize hole transport by using DABCO as apical linker

References

[1] R. Haldar et al. *Chem. Sci.* **2021**, 12, 4477-4483 [2] T.C. Narayan et al. J. Am. Chem. Soc. 2012, 134, 31, 12932-12935 [3] E. Zojer and C. Winkler, J. Phys. Chem. Lett. 2021, 12, 29, 7002-7009 [4] C. Winkler and E. Zojer, *Nanomaterials* **2020**, 10, 2372 [5] J.P. Perdew et al. *Phys. Rev. Lett.* **1996**, 77, 3865 [6] J. Grimme et al. J. Chem. Phys. **2010**, 132, 154104 [7] R. Jinnouchi et al. *Phys. Rev. B*, **2019**, 100, 014105 [8] V. Coropceanu et al. *Chem. Rev.* **2007**, 107, 926-952

- Consider quantities potentially more suitable for describing disordered structures (like **transfer integrals**, hopping mobility, etc)
- Describe the actual carrier dynamics via Monte-Carlo type approaches
- Go **beyond** Γ **-point vibrations** by studying supercells
- Analyze specific structures with extremely high/low effective masses
- Study impact of metal ions (e.g. Cu) on distortions
- Potentially design linkers resulting in a suppressed dynamic disorder

Contact robbin.steentjes@tugraz.at

Acknowledgements

TU Graz - Lead Project LP03: Porous Materials @ Work

Vienna Scientific Cluster