

Daniel Huber, BSc

Redispatch-Optimierung eines Übertragungsnetzes

Masterarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium

Elektrotechnik - Wirtschaft

eingereicht an der

Technischen Universität Graz

Betreuer

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Herwig Renner

Graz, Juni 2021

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGraz online hochgeladene Textdokument ist mit der vorliegenden Dissertation identisch.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGraz online is identical to the present master's thesis.

Ort, Datum

Huber Daniel

Kurzfassung

Durch die Öffnung der europäischen Elektrizitätsmärkte kam es in den vergangenen Jahren zu einem Anstieg des internationalen Stromaustausches und damit zu einer zunehmenden Auslastung der Höchstspannungsnetze. Zusätzlich schreitet der Ausbau dezentraler, dargebotsabhängiger Erneuerbarer Energien immer weiter voran und stellt das Übertragungsnetz vor neue Herausforderungen und einem steigenden Bedarf an Redispatch-Maßnahmen zur Entlastung von kurzfristig auftretenden Engpässen.

Ziel dieser Masterarbeit ist die Entwicklung und der Test einer Redispatch-Optimierung, um die Lastflüsse eines beliebigen Systems innerhalb definierter Grenzen zu halten. Im Zuge dessen wird der Redispatch-Einsatz einer Reihe von Kraftwerken im System optimiert, um auftretende Engpässe durch die im Netz verteilten Kraftwerke möglichst effizient zu entlasten.

Abstract

The opening of the european electricity markets led to an increase in international power exchange and therefore the power grid reaching its limits. Additionally, the expansion of decentralised, supply-dependent renewables is progressing. This leads to the grid facing new challenges such as an increasing demand of redispatch measures for relief from shortterm bottlenecks.

The aim of this masters thesis is to bring any power flow in a system below defined limits by optimizing the utilization of redispatch power plants in the grid to decrease occuring bottlenecks as efficient as possible.

Variablenverzeichnis

Für die Masterarbeit wird folgende Notation verwendet:

- Vektoren als fett geschriebene Kleinbuchstaben ${\boldsymbol x}$
- Matrizen als fett geschriebene Großbuchstaben \boldsymbol{X}

Es gilt für alle Berechnungen:

- Knotenleistungen sind positiv für Erzeuger.
- Knotenleistungen sind negativ für Verbraucher.

Verwendung von Indizes für Knoten und Zweige:

- N, Q Indizes für Knoten/Kraftwerke.
- $P_N()$ Nummer in Klammer / Nummer im Indizes bezieht sich auf den zugehörigen Knoten.
- L Indizes für Zweige/Leitungen, werden Zweige mit zwei Indizes bezeichnet, beziehen sich diese auf die verbundenen Knoten, Zählrichtung ist vom ersten zum zweiten Index.
 - $P_L()$ Nummer in Klammer bezieht sich auf die zugehörige Leitung.
 - sel ursprünglich eingespeiste/verbrauchte Leistung
 - rdp nach dem Redispatch
 - n-1 Ausfall einer Leitung

- **B** Systemsuszeptanzmatrix
- B_d Zweigsuszeptanzdiagonalmatrix
- Y_d Zweigadmittanzdiagonalmatrix
- PTDF Power Transfer Distribution Factor Matrix
 - \boldsymbol{x} Optimierungsvariable
 - Δp_L Lastflussänderung der Optimierung
 - c_N fiktiver Redispatch-Preis im Kraftwerk
 - c_L fiktiver Preis für überlastete Leitungen
 - $p_{N,sel}$ eingespeiste Leistung ausgewählter Kraftwerke

P_b	Bezugsleistung
U_{b1}, U_{b2}	Bezugsspannung
U_N, U_Q	Knotenspannung
G_L	Leitwert der Leitung
B_L	Leitungssuszeptanz
R_L	Leitungswirkwiderstand
X_L	Leitungsreaktanz
Z_L	Leitungsimpedanz
θ_N, θ_Q	Knotenspannungswinkel
t	Zeitpunkt
P_L	Lastfluss der Leitung
ΔP_L	Lastflussänderung durch Redispatch
P_{Lmax}	Leitungslimit
P_N	Eingespeiste Leistung
ΔP_N	Redispatch-Leistung
$f(oldsymbol{x})$	Zielfunktion
	P_b U_{b1}, U_{b2} U_N, U_Q G_L B_L R_L X_L Z_L θ_N, θ_Q t P_L ΔP_L P_Lmax P_N ΔP_N $f(\boldsymbol{x})$

Abkürzungsverzeichnis

	ÜNB	Übertragungsnetzbetreiber
	EE	Erneuerbare Energien
	KWK	Kraft-Wärme-Kopplung
	Rdp	Redispatch
	PTDF	Power Transfer Distribution Factor
ł	APG	Austrian Power Grid
	Ausgangszustand	vor dem Eingriff durch Redispatch
	Engpass	Leitungsüberlastung durch überschreiten des Leitungslimits
	220kV Ost-West Trasse	220kV Leitungen zwischen Knoten 4 und Knoten 41
	380kV Ost-West Trasse	380kV Leitungen zwischen Knoten 7 und Knoten 40
	sign	Matlab singum-Funktion

Abkürzungen um in Matlab die entsprechenden Zeilen und Spalten der Matrix anzuspre-

chen:

	ltg	Leitung
	ol	überlastete Leitungen
ł	rdp	Redispatch-Kraftwerke
	ib	nicht überlastete Leitu

ib nicht überlastete Leitungennpp nicht redispatch fähige Kraftwerke

Inhaltsverzeichnis

1	Ein	leitung	r S	1
2	Theorie und Methodik		2	
	2.1	Dispat	tch - Redispatch	2
	2.2	Engpa	assmanagement	3
		2.2.1	Strom-/Spannungsbedingter Redispatch	4
	2.3	Koste	n und Vergütung	4
		2.3.1	Vergütung	6
	2.4	Per-U	nit System	8
	2.5	Zweig-Knoten-Inzidenzmatrix		8
	2.6	Ersatz	zleitungen	9
	2.7	DC-La	astflussverfahren	10
		2.7.1	DC-Lastfluss Annahmen	10
		2.7.2	DC-Lastfluss Gleichungen	12
		2.7.3	DC-Lastfluss Abweichungen	13
	2.8	PTDF	F-Matrix	15
		2.8.1	Beispielhafte Berechnung der PTDF-Matrix	15
		2.8.2	Einfluss der Redispatch-Kraftwerke auf die einzelnen Leitungen	19
3	Net	zmode	ell	21
	3.1	Bilanz	knoten	24
	3.2	Ausga	ngszustand	25
4	Opt	imieru	ing	27
	4.1	Zielfu	nktion	27
	4.2	Neben	bedingungen	30
5	Erg	ebniss	e	31
	5.1	Optim	nierung	31
Dŧ	aniel I	Huber,	BSc	VI

6	Zus	ammenfassung und Schlussfolgerung	53
	5.5	Lastflussbeispiel Leitung 65	50
	5.4	Lastflussbeispiel Leitung 116	49
	5.3	Lastflussbeispiel Südwesten	45
		5.2.1 Überprüfung des n-1 Kriteriums	43
	5.2	Lastflussbeispiel Nordwesten	35

1 Einleitung

Das Voranschreiten der Energiewende führt zu einem grundlegenden Wandel des Energiesystems weg von wenigen, zentralen Erzeugungsanlagen hin zu einem Netzwerk aus vielen, dezentralen Einspeisern, Verbrauchern und Prosumern, die steigende Anforderungen an die Übertragungsnetzbetreiber stellen. Dieser Wechsel hin zu Erzeugungsanlagen von oftmals dargebotsabhängigen Erneuerbare Energien stellt das Stromnetz zunehmend vor neue Herausforderungen. Zum einen müssen Erzeugung und Verbrauch im Netz stets ausgeglichen sein, zum anderen sind die Leitungskapazitäten des Netzes begrenzt. So wird bei einem Handelsgeschäft nicht nur die nächstgelegene Leitung, sondern das gesamte Netz beeinflusst. Durch die Überlagerung vieler Geschäfte ist es nicht immer möglich, die volle physikalische Übertragungskapazität bereitzustellen. [1]

Die Netzbetreiber sind gesetzlich ermächtigt und verpflichtet, bestimmte Maßnahmen zur Aufrechterhaltung der Sicherheit und Zuverlässigkeit des Elektrizitätsversorgungssystems zu ergreifen, unter Ersatz der Kosten. Die deutsche Bundesnetzagentur unterteilt die Redispatch-Maßnahmen in verschiedene ÜNB Maßnahmen zur gemeinsamen Maßnahmenoptimierung der ÜNB[2]:

- Redispatch: Drosselung und Erhöhung der Stromeinspeisung von Kraftwerken.
- Reservekraftwerke: Zur Beschaffung noch fehlender Redispatch-Leistung.
- Einspeisemanagement: Abregelung von Stromeinspeisung aus erneuerbaren Energien und KWK-Anlagen.

Ziel dieser Masterarbeit ist es, eine Methode zu entwerfen, um die Lastflüsse eines beliebigen Netzes über einen bestimmten Zeitraum unter den definierten Leitungsgrenzen zu halten und so auftretende Engpässe durch gezielten Redispatch zu vermeiden. Dies soll durch optimierten Einsatz der Redispatch-Kraftwerke geschehen, um die Änderung der Einspeiseleistung und die somit entstehenden Redispatch-Kosten so gering wie möglich zu halten.

2 Theorie und Methodik

2.1 Dispatch - Redispatch

Durch den verstärkten Ausbau von fluktuierenden Einspeisungen aus Wind- und Photovoltaik-Anlagen und dem daraus resultierenden lokalen Stromüberschuss, sowie einem gleichzeitig zunehmenden Stromdefizit durch Stilllegung konventioneller Kraftwerke und der immer höher werdenden Stromnachfrage in Kombination mit nur langsam voranschreitendem Netzausbau kommt es vermehrt zu Netzengpässen im Übertragungsnetz.

Den geplanten Kraftwerkseinsatz haben die Kraftwerksbetreiber im Rahmen des marktbasierten Dispatch (der "Kraftwerkseinsatzplanung") an den Übertragungsnetzbetreiber (in Österreich die APG) gemeldet. Basierend auf diesen Fahrplänen der Kraftwerksbetreiber und weiteren relevanten Daten, wie dem prognostizierten Verbrauch, wird durch den ÜNB eine Netzbelastungsberechnung durchgeführt. Dadurch wird ersichtlich, welche Teile des Stromnetzes am nächsten Tag durch den gemeldeten Dispatch wie stark beansprucht werden und wo es zu Engpässen im Netz kommen könnte.

Droht an einer bestimmten Stelle in seinem Netz ein Engpass, ordnet der zuständige UNB einen Eingriff in diesen marktbasierten, ursprünglich geplanten Fahrplan an, um Überlastungen im Stromnetz vorzubeugen (präventiver Redispatch) oder zu beheben (kurativer Redispatch), indem Kraftwerke diesseits des Engpasses angewiesen werden ihre Einspeisung zu drosseln(negativer Redispatch), während Anlagen jenseits des Engpasses ihre Einspeiseleistung erhöhen (positiver Redispatch) müssen. Es wird also nicht die eingespeiste Strommenge, sondern deren örtliche Verteilung verändert. Da die Stromerzeugung aus erneuerbaren Energien schwer planbar ist kommen in Österreich überwiegend Speicherkraftwerke im Westen und Wärmekraftwerke im Osten zur Vermeidung von Engpässen zum Einsatz. 2020 gingen rund 20%-25% der Redispatch-Maßnahmen auf den Einsatz von Speicherkraftwerken und 75%-80% auf den Einsatz von Wärmekraftwerken zurück. Niedrige Marktpreise gefährden deren Verfügbarkeit, wodurch ein flexibler und effizienter Einsatz der Redispatch-Maßnahmen notwendig ist.

[1] [3]

2.2 Engpassmanagement

Merkmal einer zuverlässigen Stromversorgung ist die Einhaltung von Spannungsbandgrenzen und der maximalen Auslastung von Leitungen. Andernfalls kann es zu Überlastungen und Störungen der Betriebsmittel kommen. Die im Netz auftretenden kritischen Situationen, die in einem Engpass resultieren, können in folgende Ursachen unterschieden werden:

- Leitungsabschaltungen aufgrund von Wartungsarbeiten können an kritischen Punkten im Netz zu beträchtlichen Belastungen für parallele Leitungen führen.
- unvorhersehbare Ereignisse, z.B. abnormale Wetterkonstellationen, die erhebliche Einspeiseänderungen durch dargebotsabhängige Erzeuger zur Folge haben.
- verzögerter Netzausbau, aufgrund langwieriger Genehmigungsverfahren für Leitungstrassen und langer planungsbedingter Vorlaufzeit
- vermiedener Netzausbau, da nicht jeder Netzausbau wirtschaftlich sinnvoll ist kann durch Einspeisespitzenkappung der Netzausbau ebenfalls optimiert werden.
 - [4]

Übertragungsnetzbetreiber müssen im Rahmen des wirtschaftlich Zumutbaren verhindern, dass Engpässe in ihren Netzen und an den Kuppelstellen zu benachbarten Netzen entstehen.

- Im ersten Schritt setzt der Netzbetreiber netz- oder marktbezogene Instrumente wie Countertrading, Redispatch oder abschaltbare Lasten ein.
- 2. Im zweiten Schritt werden konventionelle Kraftwerke auf ein netztechnisch erforderliches Minimum abgeregelt.

 Erst danach dürfen Erneuerbare Energien und KWK-Anlagen auf Verlangen des Netzbetreibers im Rahmen des Einspeisemanagements abgeregelt werden.
 [1]

2.2.1 Strom-/Spannungsbedingter Redispatch

Engpassmanagement Maßnahmen können in strom- und spannungsbedingten Redispatch, sowie Maßnahmen zum bilanziellen Ausgleich von Einspeisemanagement auf Basis Erneuerbarer Energien unterschieden werden. Der strombedingte Redispatch dient der Vermeidung/Beseitigung von kurzfristig auftretenden Überlastungen, der spannungsbedingte Redispatch der Aufrechterhaltung der Spannung in einem betroffenen Netzgebiet durch die zusätzliche Bereitstellung der Blindleistung.

Diese Arbeit bezieht sich auf den strombedingten Redispatch, auf den spannungsbedingten Redispatch soll daher nur der Vollständigkeit halber eingegangen werden.

Beim spannungsbedingten Redispatch können Maßnahmen zum Ausgleich der Systembilanz über Börsengeschäfte, so genanntes Countertrading getätigt werden, indem kurzfristig am Intraday-Markt Strom ge- und verkauft wird. In den Sommermonaten steigt der Bedarf an spannungsbedingtem Redispatch, da durch den geringeren Stromverbrauch die Spannung abfällt und zur Aufrechterhaltung dieser Blindleistung abgerufen wird. Durch den geringeren Stromverbrauch sind einige konventionelle Kraftwerke zur Blindleistungsbereitstellung nicht am Markt verfügbar und die Blindleistung muss durch spannungsbedingten Redispatch bereitgestellt werden.

2.3 Kosten und Vergütung

Beim Redispatch handelt es sich um einen Markteingriff, die betroffene Kraftwerksbetreiber müssen für die Veränderung ihres Kraftwerkseinsatzplans finanziell entschädigt werden. Die dadurch entstehenden Kosten werden über den Netztarif an die Netznutzer weitergegeben. Der Betrag, den der Regelzonenführer hier verrechnen darf, ist genau festgelegt und die Netzgebühren werden jedes Jahr von der zuständigen Regulierungsbehörde kontrolliert.

So stiegen die Tage an denen in Österreich Redispatch-Maßnahmen vorgenommen werden mussten kontinuierlich an. Durch die Auftrennung der Deutsch-Österreichischen Strompreiszone 2018 konnte dies etwas eingeschränkt werden. Seitdem ist der grenzüberschreitende Stromaustausch nicht mehr unbegrenzt möglich, sondern wird mit 4.9 Gigawatt garantiert.

Tage mit Redispatch

Abbildung 2.1: Anzahl der Tage pro Jahr an denen in Österreich Redispatch-Maßnahmen getroffen werden mussten.

Aufgrund der starken Beanspruchung und des mangelnden Ausbaus des Stromnetzes kam es in den letzten Jahren zu einer massiven Erhöhung der damit verbundenen Kosten. 2011 lagen die Kosten noch bei 1.7 Millionen e, 2019 beliefen sich die Redispatch-Kosten der APG bereits auf 147 Millionen e. In Deutschland zeigt sich ein ähnliches Bild, lagen 2011 die Redispatch-Kosten noch bei 41 Millionen e, lagen sie 2019 bereits bei 207 Millionen e. Der Rückgang 2020 lässt sich auf den Einbruch der Wirtschaft durch Ausbruch der COVID-19 Pandemie zurückführen, das ist jedoch nur ein vorübergehender Effekt und es ist zu erwarten, dass die Redispatch-Kosten wieder kontinuierlich ansteigen werden und von den Konsumenten getragen werden müssen.

Abbildung 2.2: Vergleich der jährlichen Redispatch-Kosten Österreichs und Deutschlands

2.3.1 Vergütung

Wird nun auf Anforderung des ÜNB Wirkleistungseinspeisung oder -bezug verändert, so muss der Kraftwerksbetreiber entsprechend vergütet werden, um nicht besser oder schlechter gestellt zu sein als ohne diese Redispatch-Maßnahmen. Diese Vergütung wird auf den letzten zur Verfügung stehenden Einsatzfahrplan vor der Anforderung bezogen und umfasst folgende Punkte, wenn und soweit durch die Anpassung verursacht:

- Die notwendigen Auslagen für die tatsächliche Anpassung der Einspeisung (Erzeugungsauslagen) oder Bezug.
- Den Wertverbrauch der Anlage f
 ür die tats
 ächliche Anpassung der Einspeisung oder Bezug (anteiliger Wertverbrauch).

- Nachgewiesene entgangene Erlösmöglichkeiten (Opportunitätskosten), sofern diese die durch die ersten beiden Punkte zu erstattenden Kosten übersteigen.
- Notwendige Auslagen falls die Anlage erst betriebsbereit gemacht werden muss oder geplante Revisionen verschoben werden müssen.

Viertelstündlich werden die Deckungsbeiträge aus entgangenen Erlösmöglichkeiten und der anteilige Werteverbrauch berechnet, die größere der beiden Positionen wird zusätzlich zu den Erzeugungsauslagen vergütet.

[5]

Abbildung 2.3: Vergütung der Redispatch-Kosten

Sollten anders wie in Abbildung 2.3 gezeigt die Opportunitätskosten den anteiligen Werteverbrauch übersteigen, so sind diese zu ersetzen.

2.4 Per-Unit System

Zur Vereinfachung der Berechnungen wird das Per-Unit System verwendet, indem physikalische SI-Einheiten auf Bezugswerte referenziert werden. In weiterer Folge werden Spannung und Leistung als definierte Bezugsgrößen verwendet. Alle anderen notwendigen Bezugsgrößen lassen sich auf diese zurückführen, das hat den Vorteil, dass artgleiche Systemparameter innerhalb eines Toleranzbereichs liegen und Fehler dadurch leichter erkennbar sind. Die Nennübersetzungen der Transformatoren sind automatisch berücksichtigt.

Die Leistungen werden auf eine Bezugsleistung P_b für das gesamte System bezogen. Als Bezugsspannungen U_{b1}, U_{b2} werden die Nennspannungen der jeweiligen Netzebene herangezogen. Transformatoren werden auf die Oberspannungsseite bezogen.

Bezugsgrößen:

- $P_b = 100 MW$
- $U_{b1} = 380kV, U_{b2} = 220kV$

Berechnung der bezogenen Werte:

$$P_{pu} = \frac{P}{P_b}, U_{pu} = \frac{U}{U_b}$$

$$\tag{2.1}$$

Die Bezugsimpedanz ergibt sich durch Bezugsleistung und Bezugsspannung. Sie wird für jede Netzebene einzeln berechnet. Die Umrechnung zwischen Spannungsebenen entfällt für pu Werte, da sie proportional zur Bezugsspannung sind.

$$Z_{pu} = \frac{Z}{Z_b} = Z \cdot \frac{P_b}{U_b^2} \tag{2.2}$$

In weiteren Verlauf der Arbeit werden nurmehr pu Werte verwendet.

2.5 Zweig-Knoten-Inzidenzmatrix

Die in weiterer folge nurmehr als Inzidenzmatrix bezeichnete Matrix stellt die Topologie des Netzes in einfacher Form dar. So hat das System mit N Knoten und L Zweigen die

Dimension LxN. Ein Element $E_{i,j}$ ist 1, wenn der Zweig i am Knoten j beginnt, -1 wenn der Zweig i am Knoten j endet und 0, wenn der Zweig i nicht mit dem Knoten j verbunden ist. Die Summe aller Elemente in einer Zeile muss 0 ergeben.

2.6 Ersatzleitungen

Nachdem der Rechenaufwand mit der Anzahl der Knoten in einem Netz ansteigt, kann es notwendig sein das untersuchte Netz zu reduzieren. Es wird dabei auf Spannungsinformationen in reduzierten Knoten und die Lastflüsse der reduzierten Leitungen verzichtet. Der erste Schritt zur Netzreduktion ist die Definition des Netzbereiches, welcher vollständig berechnet werden soll. Die in diesem Bereich liegenden Knoten, welche nur Zweige zu Knoten besitzen, die ebenfalls innerhalb des betrachteten Netzbereichs liegen, bleiben unverändert und sind im Folgenden als Gruppe 1 bezeichnet, die Randknoten sind in Gruppe 2 zusammengefasst. Die Knoten außerhalb des definierten Bereichs, Gruppe 3, sind die zu reduzierenden Knoten.

Abbildung 2.4: Netzreduktion

Für unser Netz aus Abbildung 3.1 bedeutet das, dass die Netzknoten im Inland die Gruppe 1 darstellen. All jene Knoten die sich im Ausland befinden und mit Ersatzzweigen verbunden sind, sind Grenzknoten und fassen mehrere Einspeisungen zusammen, die Ersatzzweige fassen ebenfalls mehrere Leitungen zusammen, um den anteilsmäßigen Lastfluss durch das Ausland nachzubilden.

[6]

2.7 DC-Lastflussverfahren

Die gängigste (statische) Netzberechnung ist das AC-Lastflussverfahren. Jedoch erhält man für ein Netz mit N Knoten mittels AC-Lastflussverfahren 2N nichtlineare Gleichungen die iterativ für jeden Schritt berechnet werden müssen. Die hohe Genauigkeit dieses Verfahrens gleicht den Rechenaufwand oft nicht aus, daher wird als vereinfachte Version das DC-Lastflussverfahren verwendet.

2.7.1 DC-Lastfluss Annahmen

Das DC-Lastflussverfahren ist eine Linearisierung des AC-Lastflussverfahrens, basierend auf folgenden Annahmen:

 Für die Zweige wird vorausgesetzt, dass der Widerstandsbelag im Vergleich zu dem Induktivitätsbelag vernachlässigbar klein ist und die Querkapazitäten ebenfalls nicht betrachtet werden müssen. Durch die gewählte Vereinfachung gehen die Netzverluste nicht in den Lastfluss ein.

$$G_L = \frac{R_L}{R_L^2 + X_L^2} \approx 0 \tag{2.3}$$

$$B_L = \frac{-X_L}{R_L^2 + X_L^2} \approx -\frac{1}{X_L}$$
(2.4)

$$\underline{Z}_L \approx j \cdot X_L \qquad \underline{Y}_L \approx j \cdot B_L \tag{2.5}$$

Die komplexe Zweigadmittanzdiagonalmatrix Y_d kann daher als Zweigsuszeptanzdiagonalmatrix mit den Blindleitwerten B_d dargestellt werden.

$$\boldsymbol{B}_{\boldsymbol{d}} = \begin{bmatrix} \frac{1}{X_1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{1}{X_N} \end{bmatrix}$$
(2.6)

Und in weiterer Folge als Systemsuszeptanzmatrix \boldsymbol{B}

$$\boldsymbol{B} = \boldsymbol{A}^T \cdot \boldsymbol{B}_d \cdot \boldsymbol{A} \tag{2.7}$$

 Das Spannungsprofil wird über das gesamte Netz als flach angenommen, das heißt alle Knotenspannungen sind im Per-Unit System gleich groß.

$$U_N \approx 1 pu \,\forall K noten$$
 (2.8)

 Die Spannungswinkel zwischen benachbarten Knoten werden als klein angenommen. Dadurch können die trigonometrischen Terme der AC-Lastflussgleichungen linearisiert werden.

$$\sin(\theta_N - \theta_Q) \approx \theta_N - \theta_Q \tag{2.9}$$

$$\cos(\theta_N - \theta_Q) \approx 1 \tag{2.10}$$

Aus diesen Annahmen kann abgeleitet werden, dass nur Wirklastflüsse berechnet werden, sowie perfekte Spannungsstützung, Blindleistungsmanagement und vernachlässigba-

re Übertragungsverluste vorausgesetzt werden.

[7]

2.7.2 DC-Lastfluss Gleichungen

Für den Lastfluss einer Freileitung gilt:

$$P_L = \frac{|U_N| \cdot |U_Q|}{X_L} \cdot \sin(\theta_N - \theta_Q) \tag{2.11}$$

Mit den Annahmen aus Kapitel 2.7.1 ergeben sich die vereinfachten Lastflussgleichungen(für eine Leitung bzw. für alle Leitungen):

$$P_{L} = B_{L}(\theta_{N} - \theta_{Q})$$

$$p_{L} = B_{d} \cdot A \cdot \theta_{N}$$
(2.12)

Für den Lastfluss eines Knotens gilt(bzw. für alle Knoten):

$$P_{N} = \sum_{Q} B_{L} \cdot (\theta_{N} - \theta_{Q})$$

$$p_{N} = A^{T} \cdot B_{d} \cdot A \cdot \theta_{N}$$
(2.13)

Substituiert man den Knotenspannungswinkel θ_N aus Gleichung 2.12 und 2.13, so ergeben sich die DC-Lastflussgleichungen.

$$p_L = ((B_d \cdot A) \cdot (A^T \cdot B_d \cdot A)^{-1}) \cdot p_N$$
(2.14)

$$PTDF^{L \times N} = (B_d \cdot A) \cdot (A^T \cdot B_d \cdot A)^{-1}$$
(2.15)

Die DC-Lastflussgleichungen für die Knotenleistungen aus 2.13 sind voneinander linear abhängig, die Matrix \boldsymbol{B} daher singulär und eine Inverse nicht existent. Ein Knoten muss

als Bilanzknoten ausgewählt werden und von den DC-Lastflussgleichungen eliminiert werden. In der Matrix $(B_D \cdot A)$ wird die zum Bilanzknoten gehörende Spalte sowie in B die dazugehörige Zeile und Spalte eliminiert. Vereinfacht kann hierfür auch die zum Bilanzknoten gehörende Spalte in der Inzidenzmatrix A eliminiert werden. Der Spannungswinkel des Bilanzknotens wird null gesetzt, da nur die Differenz der Spannungswinkel zwischen den Knoten relevant ist. In der finalen PTDF-Matrix wird die zuvor eliminierte Spalte des Bilanzknotens wieder eingefügt und alle Zeilen gleich 0 gesetzt.

Zusätzlich, um eine eindeutige Lösung zu erhalten, wird die Summe aller Knotenleistungen null gesetzt, indem die gesamte überschüssige Leistung im Bilanzknoten verbraucht wird.

$$\sum_{N} P_{N} = \mathbf{0} \tag{2.16}$$

Es sei angemerkt, dass der Zusammenhang aus den Gleichungen 2.12 und 2.13

$$\boldsymbol{p}_N = \boldsymbol{A}^T \cdot \boldsymbol{p}_L \tag{2.17}$$

für die Knoten-und Zweigleistungen nicht umkehrbar ist, da die Inverse von \boldsymbol{A} nicht existiert.

[7]

2.7.3 DC-Lastfluss Abweichungen

Aus Gleichung 2.11 ist ersichtlich, das bei einem Spannungswinkel von 90°die maximale Leistung übertragen wird. In der Realität wird der Spannungswinkel auf $\theta = 45^{\circ}$ begrenzt, da für den Generator ebenfalls rund 30°benötigt und weitere 15°als Systemreserve für dynamische Vorgänge vorgehalten werden.

Der DC-Lastfluss ist aus den getroffenen Annahmen heraus prinzipiell fehlerbehaftet. Die prozentuale Abweichung zwischen AC-Lastflussergebnissen als Referenz und den Ergeb-

nissen können wie folgend abgeschätzt werden. Die erste Vereinfachung, dass Leitungsverluste vernachlässigt werden können (Zweigimpedanzen rein induktiv), deckt sich mit steigendem Spannungslevel des Netzes immer besser mit der Realität. Der durchschnittliche Fehler in der Lastflussberechnung lässt sich für R/X-Verhältnisse unter 0.5 mit unter 5% und bei R/X-Verhältnissen unter 0.2(bei 380kV Leitungen <0.1) mit unter 2% angeben.

Die zweite Annahme für den DC-Lastfluss geht von einem ideal flachen Spannungsprofil über das gesamte betrachtete Netz aus. In der Realität ist es allerdings nahezu unmöglich ein solches Profil zu erreichen und Spannungsfluktuationen treten immer auf. Der durchschnittliche Fehler für geringe Spannungsfluktuationen (kleiner als 0.01 pu) kann mit 5% angegeben werden. Jedoch zeigen realistische Beispiele weit größere Spannungsfluktuationen, wodurch hier die größte Quelle für Ungenauigkeiten in der Lastflussberechnung zu finden sind.

Die dritte Annahme, kleine Spannungswinkel zwischen benachbarten Lasten, ist im Allgemeinen zutreffender je weniger belastet ein Netz ist. In vermaschten Netzen kann aber auch bei Starklast von geringen Winkeldifferenzen ausgegangen werden und der Linearisierungsfehler kann mit unter 1% angenommen werden.

Zusammenfassend kann festgestellt werden, dass die Genauigkeit der DC-Lastflussrechnung eine durchschnittliche Abweichung von ca. 5% zum AC-Lastfluss aufweist. Der Fehler des Lastflusses über einzelne Zweige kann jedoch durch ungünstige Verhältnisse stärker abweichen. Des Weiteren ist festzuhalten, dass die Abweichung des DC-Lastfluss zu den realen Lastflüssen im Allgemeinen größer sein wird, da durch Netzwerkvereinfachungen und von der Realität abweichenden Daten auch der AC-Lastfluss den realen Lastflüss nicht vollständig beschreiben kann.

[6]

2.8 PTDF-Matrix

Die Power Transfer Distribution Factor Matrix, kurz PTDF-Matrix beschreibt den linearen Zusammenhang zwischen den Knotenleistungen p_N und dem Lastfluss durch die Leitungen p_L . Auf die Berechnung der PTDF-Matrix wurde bereits in Kapitel 2.7.2 näher eingegangen, sie gibt Auskunft darüber, wie sich eine Stromtransaktion zwischen den Knoten auf alle Zweige auswirkt. Alle Transaktionen werden zu einer fixen Senke, dem Bilanzknoten berechnet. Ein Element $ptdf_{L,N}$ dieser Matrix gibt den Lastfluss durch die Leitung L, verursacht durch die Einspeisung von 1pu im Knoten N und dem Verbrauch dieser Leistung im Bilanzknoten an.

Der Lastfluss auf der Leitung L, vom Knoten N zum Knoten Q kann dargestellt werden als die Differenz des Lastflusses in L, durch Einspeisung in Knoten N mit Entnahme im Bilanzknoten, sowie dem Lastfluss in L durch Einspeisung in Knoten Q mit Entnahme im Bilanzknoten.

Durch die Annahme der transitiven Eigenschaften der PTDF-Matrix, aufgrund der linearen Lastflussgleichungen aus Kapitel 2.7 werden zuerst alle Transaktionen hin zum Bilanzknoten bestimmt. Daraus können nun beliebige Lastflüsse berechnet werden. [7][8]

2.8.1 Beispielhafte Berechnung der PTDF-Matrix

Da die PTDF-Matrix der Simulation zu groß ist, um das Verfahren anhand dieser qualitativ und anschaulich zu erklären soll nachfolgendes, vereinfachtes Beispiel Schritt für Schritt die Berechnung der PTDF-Matrix zeigen, um die Verständnisse für die Abläufe der Optimierung zu schaffen.

Abbildung 2.5: Beispielnetzwerk

Als Bilanzknoten wird Knoten 3 gewählt. Für die Zweigleistungen aus Abbildung 2.5 ergibt sich durch Multiplikation der Zweigsuszeptanzdiagonalmatrix mit der Inzidenzmatrix $B_d \cdot A$ folgende Gleichung (siehe Gleichung 2.12):

$$\begin{bmatrix} P_{12} \\ P_{13} \\ P_{24} \\ P_{34} \\ P_{34} \\ P_{35} \\ P_{45} \end{bmatrix} = \begin{bmatrix} B_{12} & -B_{12} & 0 & 0 & 0 \\ B_{13} & 0 & -B_{13} & 0 & 0 \\ 0 & B_{24} & 0 & -B_{24} & 0 \\ 0 & 0 & B_{34} & -B_{34} & 0 \\ 0 & 0 & B_{35} & 0 & -B_{35} \\ 0 & 0 & 0 & B_{45} & -B_{34} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{bmatrix}$$
(2.18)

_

Und für die Knotenleistungen mittels $A^T \cdot B_d \cdot A$ (siehe Gleichung 2.13):

$$\begin{bmatrix} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \end{bmatrix} = \begin{bmatrix} B_{12} + B_{13} & -B_{12} & -B_{13} & 0 & 0 \\ -B_{12} & B_{12} + B_{24} & 0 & -B_{24} & 0 \\ -B_{13} & 0 & B_{13} + B_{34} + B_{35} & -B_{34} & -B_{35} \\ 0 & -B_{24} & -B_{34} & B_{24} + B_{34} + B_{45} & -B_{45} \\ 0 & 0 & -B_{35} & -B_{45} & B_{35} + B_{45} \end{bmatrix} \cdot \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{4} \\ \theta_{5} \end{bmatrix}$$
(2.19)

Die Hauptdiagonale enthält die Summe der an den Knoten grenzenden Zweige, die anderen Zellen enthalten die negativen Leitwerte der Leitungen zu den anderen Knoten sofern vorhanden.

Wenn der Bilanzknoten nicht bereits beim Einlesen der Inzidenzmatrix eliminiert wurde muss dieser nun eliminiert werden, um die reduzierten Matrizen zu erhalten. So wird in $\boldsymbol{p_L}$ die zugehörige Spalte eliminiert.

$$\begin{bmatrix} P_{12} \\ P_{13} \\ P_{24} \\ P_{34} \\ P_{34} \\ P_{35} \\ P_{45} \end{bmatrix} = \begin{bmatrix} B_{12} & -B_{12} & 0 & 0 \\ B_{13} & 0 & 0 & 0 \\ 0 & B_{24} & -B_{24} & 0 \\ 0 & 0 & -B_{34} & 0 \\ 0 & 0 & -B_{34} & 0 \\ 0 & 0 & 0 & -B_{35} \\ 0 & 0 & B_{45} & -B_{34} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_4 \\ \theta_5 \end{bmatrix}$$
(2.20)

Und in $\boldsymbol{p_N}$ die zugehörige Zeile und Spalte.

$$\begin{bmatrix} P_1 \\ P_2 \\ P_4 \\ P_5 \end{bmatrix} = \begin{bmatrix} B_{12} + B_{13} & -B_{12} & 0 & 0 \\ -B_{12} & B_{12} + B_{24} & -B_{24} & 0 \\ -B_{13} & 0 & -B_{34} & -B_{35} \\ 0 & -B_{24} & B_{24} + B_{34} + B_{45} & -B_{45} \\ 0 & 0 & -B_{45} & B_{35} + B_{45} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_4 \\ \theta_5 \end{bmatrix}$$
(2.21)

Nun ergibt sich für die PTDF-Matrix in Gleichung 2.15

$$\boldsymbol{PTDF} = \begin{bmatrix} B_{12} & -B_{12} & 0 & 0 \\ B_{13} & 0 & 0 & 0 \\ 0 & B_{24} & -B_{24} & 0 \\ 0 & 0 & -B_{34} & 0 \\ 0 & 0 & 0 & -B_{35} \\ 0 & 0 & B_{45} & -B_{34} \end{bmatrix} \cdot \begin{bmatrix} B_{12} + B_{13} & -B_{12} & 0 & 0 \\ -B_{12} & B_{12} + B_{24} & -B_{24} & 0 \\ -B_{13} & 0 & -B_{34} & -B_{35} \\ 0 & 0 & -B_{24} & B_{24} + B_{34} + B_{45} & -B_{45} \\ 0 & 0 & -B_{45} & B_{35} + B_{45} \end{bmatrix}^{-1}$$

$$(2.22)$$

Für dieses Beispiel wird vereinfacht angenommen, dass alle Leitwerte 0.5 pu entsprechen, somit ergibt sich:

$$\boldsymbol{PTDF} = \begin{bmatrix} 0.27 & -0.45 & 0 & -0.18 & -0.009 \\ 0.73 & 0.45 & 0 & 0.18 & 0.09 \\ 0.27 & 0.55 & 0 & -0.18 & -0.009 \\ -0.18 & -0.36 & 0 & -0.55 & -0.27 \\ -0.09 & -0.18 & 0 & -0.27 & -0.64 \\ 0.09 & 0.18 & 0 & 0.27 & -0.36 \end{bmatrix}$$
(2.23)

Für den reduzierten Bilanzknoten wurde eine 0-Spalte eingefügt.

Unter der Verwendung der Transitivität können nun alle anderen Transaktionen hergeleitet werden.

Eine Einspeisung von 1 pu in Knoten 1 und Entnahme in Knoten 4 teilt sich also folgendermaßen auf die einzelnen Leitungen im Netz auf:

$$\begin{bmatrix} p_{12} \\ p_{13} \\ p_{24} \\ p_{34} \\ p_{34} \\ p_{35} \\ p_{45} \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.55 \\ 0.45 \\ 0.37 \\ 0.18 \\ -0.18 \end{bmatrix}$$
(2.24)

2.8.2 Einfluss der Redispatch-Kraftwerke auf die einzelnen Leitungen

Die PTDF-Matrix beschreibt die Aufteilung der eingespeisten Leistung jedes Kraftwerks auf alle Leitungen. Daraus lässt sich der Einfluss der Redispatch-Kraftwerke auf die einzelnen Leitungen ermitteln und somit in welchem Ausmaß diese beeinflusst werden können.

Da die Optimierung versucht, die Engpässe im Netz ganzheitlich zu reduzieren und nicht jede Leitung einzeln reduziert wird, wird die Auswirkung der Redispatch-Kraftwerke auf die einzelnen Leitungen geprüft, indem in der PTDF-Matrix die maximale und minimale Auswirkung der Redispatch-Kraftwerke auf entsprechende Leitung subtrahiert werden. Daraus lässt sich ermitteln, welche Leitungen bei Einspeisung und Entnahme von 1pu in entsprechenden Kraftwerken, wieviel davon transportieren und dementsprechend beeinflusst werden können.

$$ptdf_{maxmin}(ltg) = max(PTDF(ltg, rdp)) - min(PTDF(ltg, rdp))$$
(2.25)

Die vollständige Auflistung der Auswirkungen auf jede Leitung ist im Anhang A.2 Einfluss der Redispatch-Kraftwerke auf jede Leitung zu finden.

3 Netzmodell

Dem Netzmodell zugrunde liegen stündlich simulierte Einspeisewerte und Entnahmewerte für ein Jahr(8760 Stunden), sowie die Leitungsparameter des Übertragungsnetzes und der Transformatoren. Der anteilsmäßige Lastfluss durch das Ausland wird mittels Ersatzleitungen nachgebildet, die die angrenzenden Netze in reduzierter Form nachbilden.

Das Netz besteht aus 71 Knoten und 192 Leitungen, fünf dieser Knoten wurden als Redispatch-Knoten ausgewählt, diese können somit ihre eingespeiste/entnommene Leistung variieren. Einer dieser fünf Knoten ist zusätzlich der Bilanzknoten, dessen Aufgabe es ist, die eingespeiste und entnommene Leistung im Netz ausgeglichen zu halten. Von den 192 Leitungen sind 103 Leitungen 220kV und 380kV Freileitungen, 19 Leitungen sind Transformatoren zwischen der 220kV und 380kV Netzebene und 70 sind Ersatzleitungen.

Zu Beginn wird die Inzidenzmatrix generiert, um Netzknoten und Leitungen miteinander zu verknüpfen. Anschließend wird die PTDF-Matrix für das gesamte Netz analog zu Kapitel 2.8 berechnet. Daraus werden nun die Lastflüsse aller Leitungen für ein Jahr berechnet. P_L enthält stündliche Lastflüsse aller Leitungen, das entspricht 8760 Spalten und 192 Zeilen.

$$P_L = PTDF \cdot P_N \tag{3.1}$$

Abbildung 3.1: Netzmodell

Legende zu Abbildung 3.1

• 220kV Ebene

In Schwarz eingezeichnet befindet sich die 220kV Ebene mit zugehörigen Übertragungsleitungen und Netzknoten.

• 380kV Ebene

In Rot eingezeichnet befindet sich die 380kV Ebene mit zugehörigen Übertragungsleitungen und Netzknoten.

• Transformatoren

In Gelb eingezeichnet sind die Transformatoren zwischen der 220kV Ebene und 380kV Ebene.

• Ersatzleitungen

In Grün eingezeichnet sind die Ersatzleitungen, diese simulieren den anteilsmäßigen Lastfluss durch das Ausland.

• Redispatch-Knoten

Die Knoten K2, K20, K36, K59, K63 sind die Redispatch-Knoten, deren Einspeise-/Entnahmewerte die Optimierung variieren kann, um die Lastflüsse zu beeinflussen. Diese Knoten wurden gewählt, um die Redispatch-Kraftwerke gleichmäßig über das gesamte Netz zu verteilen und so auf möglichst viele verschiedene Engpässe einwirken zu können.

• Bilanzknoten

Knoten K36 im angrenzenden Ausland im Nordwesten wurde zusätzlich als Bilanzknoten gewählt.

3.1 Bilanzknoten

Die stündlichen Einspeise- und Entnahmewerte gleichen sich nur selten aus, somit würde mehr Leistung eingespeist werden als entnommen wird und vice versa. Der Bilanzknoten ist notwendig, um im gesamten Netz für die Simulation einen ausgeglichenen Lastfluss herzustellen, indem der Bilanzknoten zusätzlich zu seiner hinterlegten Einspeise- und Entnahmeleistung, die fehlende Leistung einspeist oder die überschüssige Leistung verbraucht.

Die Lage und Anbindung des Bilanzknotens zum restlichen Netz beeinflusst die Lastflüsse der Simulation, daher wurde Knoten K36 im angrenzenden Ausland im Nordwesten gewählt, um die Einflüsse möglichst gering zu halten. Von den für den Knoten hinterlegten Einspeise- und Entnahmewerte werden für jeden Zeit Zeitpunkt t = 1: 8760 die Summe aller(inklusive K36) Knotenleistungen P_N subtrahiert um den neuen Einspeisewert des Bilanzknotens zu erhalten.

Für jeden Zeitpunkt t wird

$$P_{36,neu}(t) = P_{36}(t) - \sum_{N=1}^{71} P_N(t)$$
(3.2)

berechnet und anschließend für die Matlab Berechnung

$$P_{36}(t) = P_{36,neu}(t) \tag{3.3}$$

gesetzt, um die Matrix für die Knotenleistungen in Matlab zusammenzusetzen.

Nun gilt für jeden Zeitpunkt t im Netz:

$$\sum_{N=1}^{71} P_N(t) = 0 \tag{3.4}$$

3.2 Ausgangszustand

Um einen ersten Überblick über die Lastflüsse im Netz zu erhalten, werden ohne Optimierung die Leitungslasten für ein Jahr berechnet. Daraus kann eine erste Abschätzung getroffen werden, an welchen Stellen im Netz sich mögliche Engpässe¹ befinden und genauer betrachtet werden sollten, wie in Abbildung 3.2 dargestellt.

Im Ausgangszustand kommt es in 7753 der 8760 Stunden, also in 88.5% der Zeit zu mindestens einem Engpass im Netz und insgesamt zu 30078 Engpassstunden.

Abbildung 3.2: Engpässe je Leitung im Ausgangszustand über ein Jahr

Abbildung 3.3 zeigt wie häufig Engpässe im Ausgangszustand auftreten, die ihre Leitungslimits um mehr als 10% (in rot) und mehr als 20% (in schwarz) übersteigen würden. Das Leitungslimit kann durch geeignetes Monitoring und Umgebungstemperatur in der Realität ebenfalls geringfügig überschritten werden, ohne dass die Leitung entlastet oder vom Netz genommen werden muss. Nachfolgende Abbildung gibt eine zusätzliche Abschätzung

 $^{^1 \}ddot{\mathrm{U}}$ berschreiten des Leitungslimits, Leitungslimit sind 100% der zulässigen übertragbaren Leistung der Leitung aus A.1 Netzparameter

darüber, wie oft Leitungen ihre Grenzen deutlich überschreiten und daher gezielt entlastet werden müssen.

Abbildung 3.3: Eng
pässe die ihre Leitungslimits im Ausgangszustand um größer
 10% und 20%übersteigen

4 Optimierung

Die zur Verfügung gestellten Leitungsparameter aus dem Anhang A.1 Netzparameter und Knotenleistungen wurden als Matrizen in Matlab implementiert und daraus das Netzmodell generiert. Anschließend wurde in Matlab ein Skript für die Redispatch-Optimierung geschrieben, um für einen beliebigen Zeitraum, für beliebig wählbare Redispatch-Knoten die Lastflüsse im Netz zu optimieren und auszugeben. Ein wesentlicher Teil davon ist die fmincon-Optimierung zur Minimierung der Summe aus fiktiven Redispatch-Kosten der Kraftwerke und der fiktiven Kosten für überlastete Leitungen durch berechnen der optimierten Einspeisewerte der Redispatch-Kraftwerke.

Die Optimierungsvariable $\boldsymbol{x} = \begin{bmatrix} P_N(2) & P_N(20) & P_N(36) & P_N(59) & P_N(63) \end{bmatrix}^T$ enthält jene Kraftwerke, die als Redispatch-Kraftwerke ausgewählt wurden und sich somit in ihrer Einspeise-/Entnahmeleistung ändern dürfen. Durch Ändern der Optimierungsvariable \boldsymbol{x} wird versucht ein lokales Minimum für die Zielfunktion $f(\boldsymbol{x})$ zu finden, unter Vermeidung von neuen Leitungsüberlastungen. Das führt zu einer bestmöglichen Ausnutzung der vorhandenen Netzkapazitäten durch die neu berechneten Einspeisewerte der Redispatch-Kraftwerke. Die Optimierung wird für jede Stunde neu berechnet, als Startwert für \boldsymbol{x} dienen die Einspeiseleistungen der jeweiligen Kraftwerke zu diesem Zeitpunkt.

4.1 Zielfunktion

Die Zielfunktion $f(\boldsymbol{x})$ beschreibt die Änderung der Kraftwerkseinspeisung und die dadurch resultierende, gleichzeitige Auswirkung auf alle Leitungen, um eine möglichst optimierte Aufteilung der Redispatch-Leistung auf die verschiedenen Kraftwerke zu erreichen. Durch Ändern der Optimierungsvariable \boldsymbol{x} und die daraus resultierenden Auswirkungen auf alle Leitungen wird versucht, den Lastfluss auf überlasteten Leitungen zu reduzieren und die auftretenden Engpässe zu reduzieren. Eine Änderung der Einspeisung ohne Verbesserung des Lastflusses würde zu höheren fiktiven Kosten führen und somit zu keinem neuen Minimum für $f(\boldsymbol{x})$.

$$f(\boldsymbol{x}) = \underbrace{\sum(\boldsymbol{c}_{N}(rdp) \cdot |\boldsymbol{x} - \boldsymbol{p}_{N,sel}(rdp)|)}_{1.Teil} + \underbrace{\sum(\boldsymbol{c}_{L}(ol) \cdot 0.5 \cdot (sign(\Delta \boldsymbol{p}_{L}) + 1) \cdot \Delta \boldsymbol{p}_{L})}_{2.Teil}$$
(4.1)

 mit

$$\Delta p_{L} = |PTDF(ol, rdp) \cdot x + PTDF(ol, npp) \cdot p_{N,sel}(npp)| - p_{L,max}(ol)$$
(4.2)

Der 1.Teil der Zielfunktion beschreibt die Summe der Änderung der Einspeiseleistung aller Redispatch-Kraftwerke. $p_{N,sel}(rdp)$ enthält die Knotenleistungen der Redispatch-Kraftwerke im Ausgangszustand. Diese werden von der Optimierungsvariable x subtrahiert und darüber der Absolutwert gebildet und mit den fiktiven Redispatch-Kosten des Kraftwerks multipliziert. Für den Redispatch-Vorgang ist die Abweichung zum vorgegebenen Dispatch relevant, da sowohl eine Erhöhung als auch Reduzierung der eingespeisten Leistung Kosten verursacht.

Der Optimierer versucht somit die Anderung der Einspeiseleistung für positiven und negativen Redispatch so gering wie notwendig zu halten, dies führt zu einem effizienteren Kraftwerkseinsatz, indem Kraftwerke mit mehr Einfluss auf die überlasteten Leitungen mehr zu deren Reduktion beitragen.

Der 2. Teil multipliziert überlastete Leitungen mit fiktiven Kosten, Δp_L enthält dabei die überschüssige Leistung je Leitung. Dafür wird die Auswirkung der Redispatch-Kraftwerke auf alle überlasteten Leitungen und die Auswirkung der nicht Redispatch-Kraftwerke auf alle überlasteten Leitungen addiert. Anschließend wird der Absolutwert gebildet und die maximal übertragbare Leistung der Leitung subtrahiert, um die überschüssige Leistung je Leitung zu erhalten.

 $sign(\Delta p_L)$ übergibt eine Matrix der selben Größe wie Δp_L , für die einzelnen Werte gilt:

- 1, wenn der korrespondierende Wert von Δp_L größer 0 ist (Leitung ist überlastet).
- 0, wenn der korrespondierende Wert von Δp_L gleich 0 ist.
- -1, wenn der korrespondierende Wert von Δp_L kleiner 0 ist(Leitung ist innerhalb des Limits).

Durch entsprechende Multiplikation und Addition wird nun Δp_L mit dem durch die signum-Funktion enstehenden Vektor $sign(\Delta p_L)$ multipliziert, um alle nicht überlasteten Leitungen null zu setzen. Dadurch kann der Optimierer nicht durch weiteres reduzieren einer nicht überlasteten Leitung die Gesamtfunktion minimieren. Dieser Teil befindet sich in der Zielfunktion, da manche Engpässe nicht oder nur durch viel zu hohe Einspeiseänderung der Redispatch-Kraftwerke behoben werden können.

 c_N ist der fiktive Preis für die Einspeiseänderung der Kraftwerke, c_L der fiktive Preis für die Überlastung der Leitung. Je größer das Verhältnis der beiden zueinander, desto mehr Leistungsänderung der Kraftwerke wird akzeptiert, um den Lastfluss einer Leitung zu verringern. Für die in dieser Arbeit angestellten Berechnungen sind die fiktiven Preise der Einspeiseänderung für alle Kraftwerke gleich groß.

$$\frac{\boldsymbol{c_N}}{\boldsymbol{c_L}} = 10 \tag{4.3}$$
4.2 Nebenbedingungen

Für die lineare Ungleichungsnebenbedingung gilt, die Auswirkung der neuen Redispatch-Leistungen auf alle Leitungen darf die freie Leitungskapazität nicht übersteigen, um nicht Engpässe zu entlasten indem an anderer Stelle im Netz Engpässe entstehen. Die setzt aus der maximalen Leitungslast abzüglich der Auswirkung aller Einspeisungen(exklusive der Redispatch-Leistungen) auf alle Leitungen zusammen. Die selben Grenzen werden auch mit negativem Vorzeichen für die PTDF-Matrix eingefügt, da die PTDF's eine Richtung enthalten und das Vorzeichen relevant ist.

$$\boldsymbol{A} \cdot \boldsymbol{x} \le \boldsymbol{b} \tag{4.4}$$

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{PTDF}(ib, rdp) \\ -\boldsymbol{PTDF}(ib, rdp)) \end{bmatrix}$$
(4.5)

$$\boldsymbol{b} = \begin{bmatrix} \boldsymbol{p}_{\boldsymbol{L},\boldsymbol{max}}(ib) - \boldsymbol{PTDF}(ib,npp) \cdot \boldsymbol{p}_{\boldsymbol{N},\boldsymbol{sel}}(npp) \\ \boldsymbol{p}_{\boldsymbol{L},\boldsymbol{max}}(ib) + \boldsymbol{PTDF}(ib,npp) \cdot \boldsymbol{p}_{\boldsymbol{N},\boldsymbol{sel}}(npp) \end{bmatrix}$$
(4.6)

Die lineare Gleichungsnebenbedingung gibt vor, dass die Summe der Redispatch-Leistung aus positivem und negativem Abruf Null ergeben muss.

$$Aeq \cdot x = beq \tag{4.7}$$

$$\boldsymbol{Aeq} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$
(4.8)

$$\boldsymbol{beq} = \sum \boldsymbol{p_{N,sel}}(rdp) \tag{4.9}$$

Für die untere und obere Grenze der Optimierungsvariable gibt es keine Vorgaben, um die Optimierung vorerst nicht zu beschränken, daher unterliegen die Redispatch-Kraftwerke keinen Leistungsgrenzen.

5 Ergebnisse

5.1 Optimierung

Auf Basis der stündlichen Leitungslasten und den sich dadurch ergebenden Engpässen für jede Stunde werden optimierte Einspeisewerte der Redispatch-Kraftwerke berechnet, sofern eine Entlastung der Engpässe möglich ist. Im Ausgangszustand, ohne Eingriffe kommt es in 7753 Stunden zu mindestens einem Engpass im Netz, insgesamt ergeben sich 30078 Engpässe. In 2790 Stunden davon konnten durch entsprechenden Redispatch Engpässe beseitigt werden, genau 17230 der 30078 oder 57.28%. Abbildung 5.1 zeigt auch, dass auf den meisten Leitungen die Engpässe deutlich reduziert werden konnten. Lediglich bei den Leitungen 59, 65 und 69 konnte keine wesentliche Verbesserung erzielt werden. Auf die Leitungen 59 und 69 wird in Kapitel 5.2, auf Leitung 65 in Kapitel 5.5 näher eingegangen.

Die Engpässe¹ im Ausgangszustand sind in rot, die verbleibenden Engpässe nach dem Redispatch in schwarz dargestellt.Die Variablen werden in pu berechnet und dargestellt, 1pu entspricht dabei 100MW.

 $^{^1 \}ddot{\mathrm{U}}$ berschreiten des Leitungslimits, Leitungslimit sind 100% der zulässigen übertragbaren Leistung der Leitung aus A.1 Netzparameter

Abbildung 5.1: Engpässe je Leitung inklusive Redispatch über ein Jahr

Abbildung 5.2: Verbleibende Engpässe nach dem Redispatch, die Leitungslimits um mehr als 10% und 20% übersteigen.

Abbildung 5.3 zeigt für den gesamten Zeitraum wann ein Redispatch abgerufen wird,

sowie die Summe der positiven und negativen Redispatch-Leistung.

Abbildung 5.3: Positive und negative Redispatch-Leistung

Abbildung 5.4 zeigt ebenfalls die positive und negative Redispatch-Leistung aufgeteilt auf die einzelnen Kraftwerke. Für diese Abbildung ist anzumerken, dass die Linien dicker dargestellt sind als in Abb. 5.3, um die einzelnen Kraftwerksänderungen besser zu erkennen. Ein wesentlicher Teil der Leistung wird zwischen Knoten 2 und 36 umverteilt, um die häufig überlasteten Leitungen im Nordwesten zu entlasten. Je mehr sich Erzeuger und Verbraucher gleichmäßig über das Netz verteilen und den Lastfluss ausgeglichen halten, desto weniger besteht die Notwendigkeit des Lastausgleichs durch den Bilanzknoten und den damit verbundenen Lastfluss. Diese beiden Knoten sind zusätzlich mit Ersatzleitungen verbunden, das ermöglicht einen anteilsmäßigen Lastfluss über diese Ersatzleitungen und führt mehr Spielraum für die Optimierung, ohne alle 220kV und 380kV Zuleitungen zu überlasten.

Abbildung 5.4: Redispatch-Leistung je Kraftwerk im Überblick

Über das betrachtete Jahr wurden in Summe 8086.47 GWh an positiver und negativer Redispatch-Arbeit abgerufen. Nachfolgende Abbildung zeigt die Summe der positiv und negativ abgerufenen Redispatch-Arbeit jedes Monats.

Abbildung 5.5: Gesamte Redispatch-Arbeit je Monat

5.2 Lastflussbeispiel Nordwesten

Die in Abbildung 3.2 dargestellten Überlastungen je Leitung geben Aufschluss über die Lastflüsse im Netz. Ein wesentlicher Teil der auftretenden Engpässe befindet sich im Nordwesten, im Bereich des Bilanzknotens und der 220kV und 380kV Ost-West Trasse.

Zu Gunsten der Darstellbarkeit wird bei Doppelleitungen mit gleichen Lastflüssen nur auf eine dieser Leitungen in den Abbildungen eingegangen. In Schwarz wird jeweils der ursprüngliche Lastfluss ohne Redispatch dargestellt, in Blau mit Eingriff der Redispatch-Kraftwerke um den Lastfluss zu beeinflussen und in Rot das Leitungslimit der jeweiligen Leitung(positiv und negativ, abhängig von der Lastflussrichtung).

Abbildung 5.6: Netzbereich Nordwesten

Abbildung 5.7 gibt einen Überblick über den gesamten Betrachtungszeitraum der Leitungen.

Abbildung 5.7: Lastfluss Nordwesten im Überblick

Abbildung 5.8 zeigt noch einmal für den Bereich t = 2320: 2369 wann die Optimierung eingreift, um durch Redispatch den Lastfluss zu beeinflussen. Im Bereich t = 2324 überschreitet Leitung 69 ihr Limit und die Optimierung greift wie in Abbildung 5.10 gezeigt ein, um den Lastfluss möglichst innerhalb des Leitungslimits zu halten, indem Leistung zwischen $p_N(2)$ und $p_N(59)$ umverteilt wird, um den Lastfluss innerhalb der vorgegebenen Grenzen zu halten. Sobald der ursprüngliche Lastfluss das Limit nicht mehr überschreitet, greift auch die Optimierung nicht weiter ein um den Lastfluss zu beeinflussen.

Der Vergleich zwischen Abb. 5.8 und Abb. 5.9 zeigt, dass die 380kV Trasse nicht vollständig ausgenutzt werden kann, sondern durch die Transformatoren (Leitung 116, 117, 118) und die 220kV Leitungen ins nordwestliche Ausland hin zum Bilanzknoten begrenzt wird. Die Transformatoren können in Summe 16.5pu übertragen, die beiden 380kV Leitungen 29 und 30 sind jeweils auf 15.5pu limitiert.

Ab t = 2354 steigt der Lastfluss auf einigen Leitungen wieder über deren Limits an und die Optimierung greift erneut ein, um den Lastfluss zu beeinflussen. So übersteigen ab dem Zeitpunkt t = 2356 die Leitungen 18, 19, 69, 70 und 53, 60 ihre Limits. Durch geeigneten Redispatch können bis auf Leitung 69 alle Leitungen dadurch unter ihren Limits gehalten werden. Das begrenzt ebenfalls den übertragbaren Lastfluss auf den 380kV Leitungen 29 und 30.

Abbildung 5.8: Lastfluss Nordwesten im Detail, 220kV Leitungen

Abbildung 5.9: Lastfluss Nordwesten im Detail, 380kV Leitungen

Abbildung 5.10 zeigt die Änderung der eingespeisten Leistung. Der Optimierung steht es

frei, wieviele der zur Verfügung stehenden Kraftwerke gleichzeitig eingesetzt werden, um den Lastfluss zu beeinflussen. Der Verbrauch im Knoten K2 wird reduziert und gleichzeitig auf die anderen Knoten aufgeteilt.

Abbildung 5.10: Redispatch-Leistung der einzelnen Kraftwerke, t = 2320:2369

Tabelle 1 zeigt für die besprochenen Abbildungen noch einmal eingespeiste Leistung im Ausgangszustand P_N , die Redispatch-Leistung ΔP_N und die eingespeiste Leistung inklusive Redispatch P_{Nrdp} für 2 Zeitpunkte.

	Zeitpunkt t							
	t	z = 2356	5	t = 2360				
$P_N()$	P_N	ΔP_N	P_{Nrdp}	P_N	ΔP_N	P_{Nrdp}		
	pu	pu	pu	pu	pu	pu		
K2	-7,24	-1,53	-8,77	6.69	-34.12	-27.43		
K20	-0,04	0	-0,04	-0.13	0	-0.13		
K36	-36,52	$12,\!26$	-24,26	-68.23	45.03	-23.20		
K59	-0,14	-1,25	-1,39	-0.41	-10.90	-11.31		
K63	0	-9,47	-9,47	0	0	0		

Tabelle 1: Redispatch-Kraftwerke

Tabelle 2 zeigt die Zuleitungen zum Knoten K41 und alle Zuleitungen zu den Knoten im nordwestlichen Ausland.

		Zeitpunkt t					
		1	t = 235	6	t = 2361		
$P_l()$	P_{lmax}	P_l	ΔP_l	P_{lrdp}	P_l	ΔP_l	P_{lrdp}
	pu	pu	pu	p u	pu	pu	pu
29	15.13	6,95	-2,73	4,22	14.25	-10.78	3.47
30	15.13	6,95	-2,73	4,22	14.25	-10.78	3.47
-35^{1}	9.14	1,97	-0,70	$1,\!27$	3.74	-2.12	1.62
-36^{1}	9.14	1,97	-0,70	$1,\!27$	3.74	-2.12	1.62
53	3.04	3,32	-0,55	2,77	4.60	-2.11	2.49
56	3.04	3,77	-1,05	2,72	4.60	-2.11	2.49
$\sum Ersatzl.^2$	-	8,07	-3,78	4,29	18.40	-13.12	5.28
18	5.70	6.88	-2,14	4.74	12.30	-8.08	4.22
19	5.70	6.63	-1,96	4.67	11.53	7.41	4.12
69	4.38	7.52	-2,35	5.17	13.47	-8.82	4.65
70	4.38	6.40	-2.02	4.38	11.51	7.61	3.90

 1 Leitungsrichtung K41-K44, der Lastfluss dieser Leitung wird in der Tabelle mit -1 multipliziert, um die selbe Lastflussrichtung der anderen Leitungen zu erhalten.

 2 Lastflussrichtung positiv hin zum Bilanzknoten. Enthält die Summe der Lastflusse alle Ersatzleitungen zu den Knoten 36, 37, 38 ,39. Diese sind die Leitungen 134, 135, 136, 137, 151, 152, 160, 161, 162, 163, 176, 177, 180, 181, 183, 184, 185, 186, 187.

Tabelle 2: Lastfluss der Leitungen im Nordwesten

Für den Zeitpunkt t = 2361 leistet K36 positive Redispatch-Arbeit im Ausmaß von 46.1792pu, gleichzeitig leistet K2 negative Redispatch-Arbeit im Ausmaß von 46.1736pu . Ein Großteil der Redispatch-Leistung fließt über die Leitungen in Abb. 5.11 zurück. In Summe fließen 3.3810pu über die Leitungen 15 und 16 zurück und sind ebenfalls nahe ihrer Limits 20.9565pu fließen über die ans 380kV Netz angebundene Leitung 125 zurück. Die restliche Leistung teilt sich auf die Leitungen im Netz auf und fließt letztendlich über die Ersatzleistungen im Ausland zum Knoten K2 zurück.

Abbildung 5.11: Ausgleichslastfluss im Nordosten

In diesem Zeitraum treten im Netz ebenfalls Engpässe auf den Leitungen 2, 17, 57, 58, 59 und 72 auf. Im Gegensatz zum herkömmlichen Redispatch, bei dem die Kraftwerke auf beiden Seiten des Engpasses angewiesen werden, ihre Einspeisung zu ändern, können bei diesem Modell mehrere Engpässe gleichzeitig behoben werden. Die Engpässe der Leitungen 53 und 56 pflanzen sich über die gesamte 220kV Ost-West Trasse fort. Durch die im Netz verteilten Redispatch-Kraftwerke, werden diese Engpässe ebenfalls behoben.

Abbildung 5.12: Ost-West 220kV Trasse

Der Einfluss der Redispatch-Kraftwerke ist nicht für jede Leitung gleich, so können für diesen Zeitraum die kurzzeitig auftretenden Engpässe auf den 220kV Leitungen 17 und 72 Richtung östliches Ausland keine entscheidende Verbesserung erzielt werden.

Abbildung 5.13: Lastfluss im Osten

5.2.1 Überprüfung des n-1 Kriteriums

Zur Überprüfung der n-1 Sicherheit wird angenommen, dass die Leitung 29 für den Zeitraum t = 2320 : 2369 vom Netz genommen wird. Für diesen Fall werden die umliegenden Leitungen 30, 53 und 56 genauer betrachtet, sowie Änderungen der Zuleitungen zum Bilanzknoten. Für stark ausgelastete Zeitpunkte im Netz zeigt sich, dass Leitung 30 bei Ausfall der Leitung 29 überlastet werden könnte durch den sich neu aufteilenden Lastfluss.

Die drei Transformatoren können in Summe 16.5pu übertragen, die 380kV Freileitungen 29 und 30 jeweils 15.5pu. So kann beim Ausfall einer der beiden Leitungen die zweite am Netz bleiben.

Abbildung 5.14: Lastlfuss im Nordwesten, Ausfall Leitung 29

Tabelle 3 zeigt die neu entstehenden Lastflüsse auf den Zuleitungen zu K41 für den Ausfall von Leitung 29. Ohne Eingriff würde ein Großteil der Leistung über Leitung 30 fließen. Bei einem gleichzeitig stark ausgelastetem Netz(z.B. t = 2361) kann dies zu einem Ausfall der Leitung 30 führen. Durch ein Eingreifen der Optimierung kann der Lastfluss neu aufgeteilt werden, ohne eine der umliegenden Leitungen durch diesen Ausfall zu überlasten.

		Zeitpunkt t							
			t = 23	56		t = 236	51		
$P_L()$	P_{Lmax}	P_L	$P_{L,n-1}$	$P_{Lrdp,n-1}$	P_L	$P_{L,n-1}$	$P_{Lrdp,n-1}$		
	pu	pu	pu	pu	pu	pu	pu		
29	15.13	6.95	0	0	14.55	0	0		
30	15.13	6.95	10.91	5.85	14.55	22.83	5.90		
-35^{1}	9.14	1.97	2.19	1.47	3.20	3.6702	1.18		
-36^{1}	9.14	1.97	2.19	1.47	3.20	3.6702	1.18		
53	3.04	3.32	3.79	2.94	4.67	5.66	2.82		
56	3.04	3.77	4.68	3.04	4.35	8.26	2.81		

 1 Leitungsrichtung K41-K44, der Lastfluss dieser Leitung wird in der Tabelle mit -1 multipliziert, um die selbe Lastflussrichtung der anderen Leitungen zu erhalten.

Tabelle 3: Lastflussvergleich mit und ohne Leitung 29

5.3 Lastflussbeispiel Südwesten

Dieses Beispiel geht genauer auf die auftretenden Engpässe im Südwesten ein für den Zeitraum t = 5555:5604. So sind zum Zeitpunkt t = 5563 insgesamt 15 Leitungen, Leitung 2, 18, 19, 53, 56, 59, 65, 67, 68, 69, 70, 116, 117, 118 und 119 überlastet und zum Zeitpunkt t = 5588 ebenfalls 14 Leitungen, Leitung 15, 16, 18, 19, 20, 56, 59, 65, 69, 70, 116, 117, 118 und 119. Durch Redispatch können für beide Zeitpunkte bis auf Leitung 65 und 69 alle Engpässe behoben werden.

Abbildung 5.15: Netzbereich Südwesten

Zusätzlich zu den Engpässen im Norden auf die in 5.2 bereits näher eingegangen wurde, ändert die Optimierung die Einspeisung im Knoten 20 um die Engpässe im Südwesten zu beheben.

Abbildung 5.16: Redispatch-Leistung der einzelnen Kraftwerke, t=5555:5604

Durch die Reduktion der Einspeisung von Knoten 20 wird der Lastfluss Richtung Norden

auf Leitung 119 und in weiterer Folge 67 und 68 soweit verringert, dass die Leitungslimits nicht mehr überschritten werden.

Abbildung 5.17: Lastfluss im Südwesten

Tabelle 4 zeigt die Änderung der Einspeisewerte aus Abbildung 5.16.

	Zeitpunkt t							
		t = 5563	3	t = 5588				
$P_N()$	P_N	ΔP_N	P_{Nrdp}	P_N	ΔP_N	P_{Nrdp}		
	pu	pu	pu	pu	pu	pu		
K2	10.38	-20.64	-10.26	11.28	-11.11	0.17		
K20	-0.34	-2.08	-2.42	-0.31	-4.08	-4.39		
K36	-52.29	22.65	-29.64	-44.51	15.20	-29.31		
K59	-1.04	0	-1.04	-0.93	0	-0.93		
K63	0	0	0	0	0	0		

Tabelle 4: Redispatch-Kraftwerke

Tabelle 5 zeigt die Lastflussänderung der näher betrachteten Leitungen im Südwesten.

			Zeitpunkt t					
		t	= 556	3	1	t = 558	8	
$P_L()$	P_{Lmax}	P_L	ΔP_L	P_{Lrdp}	P_L	ΔP_L	P_{Lrdp}	
	pu	pu	pu	pu	pu	pu	pu	
8	2.74	1.34	0.16	1.50	1.44	-0.13	1.31	
9	2.74	1.34	0.16	1.50	1.44	-0.13	1.31	
67	3.47	-3.62	1.22	-2.40	-3.28	1.02	-2.26	
68	3.47	-3.62	1.22	-2.40	-3.28	1.02	-2.26	
119	6.00	-7.24	2.44	-4.80	-6.56	2.04	-4.52	
120	6.00	-5.01	1.06	-3.95	-4.77	1.15	-3.62	
121	6.00	-4.92	1.06	-3.86	-4.67	1.13	-3.54	

Tabelle 5: Lastfluss der betrachteten Leitungen im Südwesten.

5.4 Lastflussbeispiel Leitung 116

Dieses Beispiel dient zum Darstellen einer Leitung, die durch die Redispatch-Kraftwerke gut beeinflussbar ist mit $ptdf_{maxmin}(116) = 0.1627pu$. In Abbildung 5.18 ist ersichtlich, dass die Optimierung den Lastfluss der Leitung durchgehend innerhalb der Limits hält und alle Engpässe behoben werden.

Abbildung 5.18: Lastfluss Leitung 116

5.5 Lastflussbeispiel Leitung 65

Bereits Abbildung 3.2 zeigt, dass die Leitung 65 einen wesentlichen Engpass im Netz darstellt. Der Grenzwert von $P_{lmax}(65) = 4.57pu$ wird über 82% der Zeit(7233 Stunden) überschritten. Gleichzeitig zeigt Abbildung 5.20, dass die Optimierung kaum Auswirkungen auf diese Leitung hat, da dieser Engpass nur in 12 dieser 7233 Stunden beseitigt werden kann.

Abbildung 5.19: 220kV Netzbereich Leitung 65

Abbildung 5.20: Lastfluss Leitung 65

Tabelle 6 zeigt für 3 Zeitpunkte die Einspeisewerte der Knoten K4, K22 und K58. In Tabelle 7 sind die zusammengefassten Zuleitungen zu den Knoten K4 und K58 und die Leitungen 12, 65 und 66 angeführt. Für t = 2356 und t = 2361 ist die Leitung nicht überlastet, wird allerdings auch durch die zu diesen Zeitpunkten im Netz vorgehenden Redispatch-Vorgängen kaum beeinflusst.

Die Kombination aus Einspeisung in K22 und dem Lastfluss der Leitung 66 reicht aus, um Leitung 65 für ungünstige Auslastungen zu überlasten. Gleichzeitig haben die im Netz verteilten Redispatch-Kraftwerke nur geringen Einfluss auf diese Leitung. Der Zeitpunkt t = 6400 bestätigt dass, indem im gesamten Netz nur Leitung 65 überlastet ist gleichwohl greift die Optimierung nicht ein, da die Leitung nicht effizient entlastet werden kann.

		Zeitpunkt t	- ,
	t = 2356	t = 2361	t = 6400
$P_N()$	P_N	P_N	P_N
	pu	pu	pu
K4	2.6068	2.5145	1.6479
K22	3.7332	3.4889	2.4698
K58	-0.6969	-1.8368	-4.7569

Tabelle 6: Einspeiseleistung der umliegenden Kraftwerke

		Zeitpunkt t					
		t = 2	2356	t =	2361	t = 0	6400
$P_L()$	P_{Lmax}	P_L	P_{Lrdp}	P_L	P_{Lrdp}	P_L	P_{Lrdp}
	pu	pu	pu	pu	pu	pu	pu
Summe Zuleitungen K4 ¹	-	-4.0121	-2.7707	-1.9604	-1.6593	3.2395	3.2395
12 (K4-K58)	4.5726	-0.6099	0.0164	0.3721	0.5240	2.5312	2.5312
65 (K22-K58)	4.5726	2.9378	3.5529	3.6709	3.8201	4.8260	4.8260
66 (K4-K22)	4.5726	-0.7954	-0.1802	0.1820	0.3312	2.3562	2.3562
Summe Zuleitungen $K58^2$	-	-1.6310	-2.8724	-2.2062	-2.5073	-2.6003	-2.6003
^{1} Lastflussrichtung positiv hin $3,4,13,14,15,16,26,27$.	zu K4	. Enthält	die Sum	ime der	Lastflüsse	der Leitu	ingen
2 Last flussrichtung positiv hin 17,62,64,71,114,115.	zu K58	8. Enthält	die Sun	nme der	Lastflüsse	der Leitu	ingen

Tabelle 7: Lastflussbeispiel Leitung 65

In Summe ist diese Leitung in 3312 Stunden als einzige Leitung überlastet, ohne dass die Leitung durch Redispatch entlastet werden kann. Wird diese Leitung gesondert betrachtet, so kann die Optimierung von den nunmehr 4441 Stunden in denen es zu Engpässen auf anderen Leitungen im Netz kommt in 2790 Stunden davon Engpässe beheben. Das sind 62.82% der Zeit.

6 Zusammenfassung und Schlussfolgerung

- Beim herkömmlichen Redispatch werden die Einspeisewerte der Kraftwerke an beiden Enden der betrachteten Leitung verändert, um den Engpass zu beheben. Durch diese Methode und die über das Netz verteilten Redispatch-Kraftwerke können durch Redispatch zwei oder mehrerer Kraftwerke im Verbund mehrere Engpässe auf einmal beseitigt werden und die Engpässe im Netz ganzheitlich reduziert werden.
- Die Leitungslimits sind in der Realität nicht so exakt wie in dieser Simulation. Durch geeignetes Thermal Rating kann die zulässige übertragbare Leistung abhängig von der Umgebungstemperatur erhöht werden.
- Entscheidend für die Simulation ist die Qualität der eingespielten Daten, je genauer Einspeiser und Verbraucher nachgebildet sind, desto weniger muss der Bilanzknoten die Leistungen ausgleichen und den Lastfluss beeinträchtigen um ein ausgeglichenes Netz für die Simulation herzustellen. Grenzknoten bilden den Import und Export aus dem Ausland nach und können durch die hohen Einspeisewerte die Simulation bei ungenauer Nachbildung ebenfalls beeinflussen.
- Als Bilanz- und Redispatch-Knoten wurde ein Knoten im Ausland gewählt, um Leitungsüberlastungen der Zuleitungen zum Bilanzknoten zu vermeiden und gleichzeitig Ausgleichslastflüsse im Ausland besser nachbilden zu können.
- Im Ausgangszustand treten vermehrt Engpässe entlang der Ost-West-Trassen im Norden und an den Grenzleitungen im Osten und Westen auf. Die Redispatch-Kraftwerke in den entsprechenden Regionen wurden gewählt, um mehrere, zusammenhängende Engpässe durch geeigneten Einsatz weniger Redispatch-Kraftwerke zu entlasten. Weitere Redispatch-Kraftwerke wurden verteilt im Netz ausgewählt, um auftretende Leitungsüberlastungen in anderen Netzbereichen ebenfalls deutlich zu reduzieren.

- Je größer der Einfluss der einzelnen Redispatch-Kraftwerke auf die Leitungen ist(siehe A.2 Einfluss der Redispatch-Kraftwerke auf jede Leitung), desto mehr Einfluss hat dieses Kraftwerk auf entsprechende Leitung. Ist der Einfluss hingegen gering durch weit entfernte Redispatch-Kraftwerke gering, wird an diesen weniger oder keine Redispatch-Leistung abgerufen.
- Eine Erhöhung oder Reduzierung der eingespeisten Redispatch-Leistung führt nicht in gleichem Ausmaß zu einer Verringerung des Lastflusses einer bestimmten Leitung, sondern teilt sich entsprechend der PTDF-Matrix auf alle Leitungen auf. Einzelne Leitungen(z.B. Leitung 65) können durch eine Kombination aus geringem Einfluss der im Netz vorhandenen Redispatch-Kraftwerke auf diese Leitung und ungünstigen Lastflüssen nicht entscheidend entlastet werden.

Literatur

- P.FEKETE. "Redispatch in Deutschland". BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. 2020.
- [2] Bundesnetzagentur. Quartalsbericht Netz- und Systemsicherheit Drittes Quartal 2020. URL: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Berichte/ 2020/Quartalszahlen_Q3_2020.pdf?__blob=publicationFile&v=2 (besucht am 07.01.2020).
- [3] APA im Auftrag der APG. APG Infografiken. URL: https://www.apg.at/mediacenter/infografiken (besucht am 02.04.2021).
- [4] Ostbayerische Technische Hochschule Regensburg. Engpassmanagement. URL: https: //www.fenes.net/forschung/energienetze/themengebiete/engpassmanagement/ (besucht am 22.03.2021).
- [5] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. "Vergütung von Redispatch-Maßnahmen". 2018.
- [6] H. RENNER S. POLSTER. "Berechnung elektrischer Energienetze". Institut f
 ür Elektrische Anlagen und Netze. TU Graz, 2017.
- [7] K. VAN DEN BERGH E. DELARUE W.D'ÄHAESELEER. "DC power flow in unit commitment models". Energy Institute. KU Leuven, 2014.
- [8] H.-J. HAUBRICH. "Technical issues regarding Open Market Coupling OMC". Institute of power systems and power economics energy research institute. RWTH Achen, 2006.

Abbildungsverzeichnis

2.1	Tage mit Redispatch, eigene Darstellung, Quelle der Daten [3]	5
2.2	Jährliche Redispatch-Kosten, eigene Darstellung, Quelle der Daten aus	
	Deutschland: [1], Quelle der Daten aus Österreich: [3]	6
2.3	Vergütung der Redispatch-Kosten, Quelle: [5]	7
2.4	Netzreduktion, Quelle: [6]	9
2.5	Beispielnetzwerk PTDF	16
3.1	Netzmodell	22
3.2	Engpässe je Leitung im Ausgangszustand über ein Jahr	25
3.3	Engpässe die ihre Leitung slimits im Ausgangszustand um größer 10% und	
	20% übersteigen	26
5.1	Engpässe je Leitung inklusive Redispatch über ein Jahr	32
5.2	Verbleibende Engpässe nach dem Redispatch, die Leitungslimits um mehr	
	als 10% und 20% übersteigen	32
5.3	Positive und negative Redispatch-Leistung	33
5.4	Redispatch-Leistung je Kraftwerk im Überblick	34
5.5	Gesamte Redispatch-Arbeit je Monat	34
5.6	Netzbereich Nordwesten	35
5.7	Lastfluss Nordwesten im Überblick	36
5.8	Lastfluss Nordwesten im Detail, 220kV Leitungen	38
5.9	Lastfluss Nordwesten im Detail, 380kV Leitungen	38
5.10	Redispatch-Leistung der einzelnen Kraftwerke, t $=2320{:}2369$	39
5.11	Ausgleichslastfluss im Nordosten	41
5.12	Ost-West 220kV Trasse	42
5.13	Lastfluss im Osten	43
5.14	Lastlfuss im Nordwesten, Ausfall Leitung 29	44
5.15	Netzbereich Südwesten	46
5.16	Redispatch-Leistung der einzelnen Kraftwerke, t $=5555:5604$	46

5.17	Lastfluss im Südwesten	47
5.18	Lastfluss Leitung 116	49
5.19	220kV Netzbereich Leitung 65	50
5.20	Lastfluss Leitung 65	51

Anhang

A.1 Netzparameter

Leitung	Startknoten	Endknoten	Nennspannung	max. übertragbare Leistung	Leitungsreaktanz
			kV	MW	Ω
1	8	56	220	352.47	34.49
2	10	62	220	347.90	18.24
3	4	62	220	304.84	47.31
4	4	62	220	304.84	47.31
5	62	64	220	304.84	2
6	62	66	220	304.84	2
7	62	65	220	304.84	2
8	50	56	220	274.36	51.2
9	50	56	220	274.36	51.2
10	16	56	220	304.84	29.5
11	16	56	220	304.84	29.5
12	4	58	220	457.26	12.14
13	4	14	220	320.08	7.1
14	4	14	220	320.08	7.1
15	4	3	220	304.84	25.6
16	4	3	220	304.84	25.6
17	58	57	220	228.63	25.665
18	41	37	220	570.05	0.698
19	41	38	220	570.05	0.698
20	27	25	220	242.73	19.155
21	27	29	220	762.10	14.5

22	27	30	220	914.52	14.5
23	33	68	220	304.84	28.719
24	16	33	220	304.84	41.2
25	16	68	220	304.84	17.87
26	4	6	220	792.59	12.7
27	4	6	220	792.59	12.7
28	51	67	380	1579.63	20.67
29	23	40	380	1513.81	34.98
30	23	40	380	1513.81	34.98
31	7	23	380	1513.81	37.2
32	7	24	380	450.19	1
33	26	49	380	1434.83	26.76
34	26	51	380	1434.83	26.799
35	41	44	220	914.52	11.72
36	41	44	220	914.52	11.72
37	28	49	380	631.85	2.88
38	19	34	380	1513.81	22.6
39	19	34	380	1513.81	22.6
40	19	18	380	1263.70	9.05
41	19	18	380	1263.70	9.05
42	35	59	380	1579.63	42.47
43	48	59	380	1579.63	27.76
44	9	23	380	1513.81	0.301
45	9	23	380	1513.81	0.301
46	59	61	380	569.98	2.57
47	59	61	380	589.07	2.64
48	5	60	380	704.25	3.23

49	5	60	380	704.25	3.23
50	42	56	220	352.47	7.143
51	8	21	220	352.47	18
52	21	42	220	329.61	9.364
53	1	41	220	304.84	28.5
54	1	15	220	304.84	21.5
55	10	15	220	304.84	18.2
56	15	41	220	304.84	26.1
57	15	46	220	304.84	4.6
58	10	46	220	304.84	13.6
59	10	55	220	347.90	9.27
60	55	62	220	347.90	12.26
61	16	54	220	285.79	39.5
62	53	58	220	365.81	24.59
63	16	54	220	285.79	39.5
64	53	58	220	365.81	24.59
65	22	58	220	457.26	0.65
66	4	22	220	457.26	11.71
67	44	52	220	347.14	40.689
68	44	52	220	347.14	40.689
69	41	36	220	438.21	0.757
70	41	39	220	438.21	0.757
71	32	58	220	304.84	18.9
72	32	31	220	228.63	17.105
73	13	27	220	792.59	24.469
74	12	13	220	792.59	12.29
75	27	43	220	762.10	32.66

76	22	49	220	769 10	17 59
10	00	40	220	702.10	17.38
77	33	12	220	762.10	14.2
78	33	68	220	305.00	28.72
79	33	16	220	305.00	41.2
80	68	16	220	305.00	17.87
81	47	67	380	1579.63	16.93
82	47	49	380	1579.63	3.742
83	11	23	380	1513.81	32.82
84	7	11	380	1513.81	4.4
85	7	59	380	1513.81	38.619
86	5	45	380	1513.81	15.05
87	45	59	380	1513.81	8.05
88	5	7	380	1513.81	15.52
89	45	71	380	1513.81	8.778
90	71	69	380	1315.70	10.355
91	45	71	380	1513.81	8.778
92	71	70	380	1315.70	20.85
93	7	59	380	1513.81	38.619
94	5	45	380	1513.81	15.05
95	45	59	380	1513.81	8.05
96	5	7	380	1513.81	15.52
97	20	49	380	1039.92	0.75
98	20	51	380	1039.92	0.75
99	20	28	380	631.85	2.02
100	19	63	380	1579.63	1.42
101	35	63	380	1579.63	9.04
102	19	63	380	1579.63	1.43

103	48	63	380	1579.63	23.73
104	6	7	380	600.00	15.787
105	6	7	380	600.00	15.787
106	10	8	220	600.00	12.828
107	10	9	380	600.00	15.874
108	10	9	380	600.00	15.787
109	27	26	380	600.00	15.435
110	27	26	380	600.00	15.435
111	33	34	380	600.00	15.435
112	33	34	380	600.00	15.435
113	33	34	380	550.00	15.61
114	58	59	380	600.00	15.787
115	58	59	380	600.00	15.787
116	41	40	380	550.00	15.1
117	41	40	380	550.00	15.1
118	41	40	380	550.00	15.1
119	52	50	220	600.00	12.828
120	50	49	380	600.00	15.433
121	50	51	380	600.00	15.433
122	53	54	220	600.00	12.828
123	3	2	220	9999999.00	110.76
124	3	7	380	9999999.00	99.636
125	2	7	380	9999999.00	99.636
126	3	17	380	9999999.00	2301.7
127	2	17	380	9999999.00	2301.7
128	3	18	380	9999999.00	2301.7
129	2	18	380	9999999.00	2301.7

130	3	25	220	9999999.00	1993.8
131	2	25	220	9999999.00	1993.8
132	3	31	220	9999999.00	2175.4
133	2	31	220	9999999.00	2175.4
134	3	37	220	9999999.00	4426.3
135	2	37	220	9999999.00	4426.3
136	3	38	220	9999999.00	1501.4
137	2	38	220	9999999.00	1501.4
138	3	67	380	9999999.00	907.22
139	2	67	380	9999999.00	907.22
140	3	69	380	9999999.00	196.47
141	2	69	380	9999999.00	196.47
142	3	70	380	9999999.00	731.27
143	2	70	380	9999999.00	731.27
144	18	17	380	9999999.00	19.851
145	17	25	380	9999999.00	614.17
146	18	25	380	9999999.00	614.17
147	17	31	380	9999999.00	3969.3
148	18	31	380	9999999.00	3969.3
149	17	33	380	9999999.00	278.06
150	18	33	380	9999999.00	278.06
151	17	38	380	9999999.00	1955.8
152	18	38	380	9999999.00	1955.8
153	17	67	380	9999999.00	755.26
154	18	67	380	9999999.00	755.26
155	17	69	380	9999999.00	487.61
156	18	69	380	9999999.00	487.61

					1
157	17	70	380	9999999.00	618.28
158	18	70	380	9999999.00	618.28
159	25	33	220	9999999.00	708.96
160	25	36	220	9999999.00	1835.5
161	25	37	220	9999999.00	1415.8
162	25	38	220	9999999.00	556.9
163	25	39	220	9999999.00	1835.5
164	25	67	380	9999999.00	205.62
165	25	69	380	9999999.00	486.91
166	25	70	380	9999999.00	979.6
167	31	33	220	9999999.00	3901.3
168	31	57	220	9999999.00	62.814
169	31	67	380	9999999.00	3588.8
170	31	69	380	9999999.00	99.991
171	31	70	380	9999999.00	299.56
172	32	48	380	9999999.00	164.24
173	36	37	220	9999999.00	0.1
174	36	38	220	9999999.00	0.1
175	36	39	220	9999999.00	0.1
176	36	67	380	9999999.00	723.06
177	36	69	380	9999999.00	1343.3
178	37	38	220	9999999.00	76.713
179	37	39	220	9999999.00	201.4
180	37	67	380	9999999.00	458.81
181	37	69	380	9999999.00	1223.5
182	38	39	220	9999999.00	491.81
183	38	67	380	9999999.00	172.44

184	38	69	380	9999999.00	510.13
185	38	70	380	9999999.00	1588
186	39	67	380	9999999.00	723.06
187	39	69	380	9999999.00	1343.3
188	57	69	380	9999999.00	149.54
189	57	70	380	9999999.00	447.98
190	67	69	380	9999999.00	866.1
191	67	70	380	9999999.00	2396
192	69	70	380	9999999.00	76.313
A.2 Einfluss der Redispatch-Kraftwerke auf jede Leitung

Leitung	$ptdf_{maxmin}$	Leitung	$ptdf_{maxmin}$	Leitung	$ptdf_{maxmin}$
	pu		pu		pu
1	0.0590	65	0.0687	129	0.0261
2	0.0537	66	0.0687	130	0.0034
3	0.0496	67	0.1210	131	0.0105
4	0.0496	68	0.1210	132	0.0006
5	0.0000	69	0.1989	133	0.0072
6	0.0000	70	0.1716	134	0.0017
7	0.0000	71	0.0312	135	0.0050
8	0.0939	72	0.0257	136	0.0051
9	0.0939	73	0.1348	137	0.0146
10	0.0761	74	0.1348	138	0.0297
11	0.0761	75	0.1367	139	0.0761
12	0.0700	76	0.1367	140	0.0111
13	0.0000	77	0.1348	141	0.2307
14	0.0000	78	0.0351	142	0.0041
15	0.0433	79	0.0397	143	0.0629
16	0.0433	80	0.0351	144	0.1151
17	0.0202	81	0.2052	145	0.0307
18	0.1825	82	0.2052	146	0.0344
19	0.1685	83	0.2464	147	0.0028
20	0.0907	84	0.2464	148	0.0033
21	0.0000	85	0.1255	149	0.0106
22	0.0000	86	0.1085	150	0.0188
23	0.0351	87	0.2304	151	0.0152
24	0.0397	88	0.1085	152	0.0162

Daniel Huber, BSc

25	0.0351	89	0.1327	153	0.0362
26	0.0210	90	0.1981	154	0.0392
27	0.0210	91	0.1327	155	0.0268
28	0.2031	92	0.0673	156	0.0313
29	0.2441	93	0.1255	157	0.0199
30	0.2441	94	0.1085	158	0.0234
31	0.2465	95	0.2304	159	0.0075
32	0.0000	96	0.1085	160	0.0042
33	0.1766	97	0.4367	161	0.0054
34	0.1747	98	0.4966	162	0.0138
35	0.1210	99	0.0668	163	0.0042
36	0.1210	100	0.3235	164	0.0412
37	0.0668	101	0.3181	165	0.0385
38	0.1937	102	0.3212	166	0.0193
39	0.1937	103	0.3366	167	0.0010
40	0.1286	104	0.0210	168	0.0049
41	0.1286	105	0.0210	169	0.0074
42	0.3181	106	0.1180	170	0.0198
43	0.3025	107	0.0427	171	0.0040
44	0.0428	108	0.0430	172	0.0398
45	0.0428	109	0.1757	173	0.2318
46	0.0000	110	0.1757	174	0.3559
47	0.0000	111	0.1296	175	0.2061
48	0.0000	112	0.1296	176	0.0378
49	0.0000	113	0.1282	177	0.0163
50	0.0590	114	0.1018	178	0.0002
51	0.0590	115	0.1018	179	0.0000

52	0.0590	116	0.1627	180	0.0594
53	0.0480	117	0.1627	181	0.0179
54	0.0480	118	0.1627	182	0.0000
55	0.0700	119	0.2419	183	0.1577
56	0.0919	120	0.1937	184	0.0429
57	0.0700	121	0.1907	185	0.0140
58	0.0700	122	0.0792	186	0.0377
59	0.0455	123	0.1308	187	0.0163
60	0.0455	124	0.0253	188	0.0139
61	0.0396	125	0.4572	189	0.0032
62	0.0396	126	0.0066	190	0.0303
63	0.0396	127	0.0252	191	0.0110
64	0.0396	128	0.0076	192	0.0101