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Abstract

Transmission grid operators are always trying to improve their simulation models since simulations

help to predict the behavior of the electricity grid. Transformers are a particularly important

component of the grid. The usual modeling approach of transformers is the classic T-model. This

model, however, is not able to model unbalanced and transient occurrences accurately. In this thesis,

a topologically correct network model is derived, which is capable of reproducing the behavior

of an actual three-phase power transformer under the influence of low-frequency transients. The

non-linearity of the core material is reproduced with the Jiles-Atherton hysteresis model to represent

this behavior accurately. Another difficulty in transformer modeling is the lack of parameter data. It

is shown in this thesis that the parameters of the network model can be determined from standard

transformer acceptance tests and a simple single-phase hysteresis measurement. The execution of

the hysteresis measurement is possible outside of specialized laboratories. The model was compared

to multiple measurements, including no-load tests and back-to-back tests with superimposed direct

currents. The results show that an accurate transformer model can be derived with reasonable effort.

The simulation model provides transmission grid operators an important and accurate tool for the

simulation of low-frequency transients.
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Kurzfassung

Netzbetreiber sind stetig daran interessiert ihre Simulationsmodelle zu verbessern, da diese dabei

helfen das Verhalten des Stromnetzes vorauszusagen. Eine besonders wichtige Komponente des

Stromnetzes sind Transformatoren. Die gängige Methode einen Transformator zu modellieren ist

das klassische T-modell. Allerdings ist dieses Modell nicht geeignet, um unsymmetrische und tran-

siente Ereignisse genau zu beschreiben. In dieser Arbeit wird am Beispiel eines realen dreiphasigen

Leistungstransformators ein topologisch-korrektes Netzwerkmodell entwickelt, welches in der Lage

ist das Verhalten des Transformators unter dem Einfluss niederfrequenter transienter Vorgänge

zu simulieren. Um dieses Verhalten genau darzustellen, wird die Nichtlinearität des Transfor-

matorkerns mithilfe des Jiles-Atherton Hysteresemodels modelliert. Eine weitere Schwierigkeit

bei der Modellierung ist das Fehlen von Parameterdaten. In dieser Arbeit wird gezeigt, dass die

Parameter des Netzwerkmodells mithilfe von Abnahmetestdaten und einer einfachen einphasi-

gen Hysteresemessung herleitbar sind. Die Hysteresemessung ist auch außerhalb von speziellen

Laboren durchführbar. Das Modell wurde mit mehreren Messungen verglichen, darunter Messun-

gen in Leerlauf und Back-to-back mit überlagertem Gleichstrom. Die Ergebnisse zeigen, dass mit

überschaubarem Aufwand ein genaues Simulationsmodell erstellt werden kann. Dieses liefert Netz-

betreibern ein wichtiges und genaues Werkzeug in der Simulation von niederfrequenten transienten

Vorgängen.
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1 Introduction

1.1 Motivation

Transformers, even though they are often taken for granted, are incredibly complicated electromag-

netic devices containing various materials that act differently [1]. This complexity leads to different

behaviors depending on the excitation [2]. Transmission grid operators express a rising demand for

transformer simulation models capable of reproducing various transient behaviors. Such models

can help to increase the understanding of transients in the electricity grid.

The classic T-model can not be used for this scenario because it is only valid for steady-state

studies. The Pi-model is superior to the T-model and should be considered instead [3]. The use of

a Pi-model, however, leads to another problem. The representation of a three-phase transformer

using an equivalent single-phase model disregards the magnetic coupling between the phases.

This limits the single-phase equivalent models to balanced and steady-state studies [4]. While it is

possible to implement extensive models of transformers, a limiting factor is the available data since

manufacturers rarely share their design information [2].

Depending on the study, the use of a hysteresis model can be of considerable importance [5]. The

implementation of such models can be rather simple in theory, however, the parameter identification

of the hysteresis model can be challenging, especially if no data sheet of the core material is

available. Even in the unlikely case that such information is available, it is still necessary to adapt it

to measurements since the losses of an entire transformer are usually higher than the losses of the

pure core material [6].
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1 Introduction

1.2 Objective of the Thesis

The main objective of this thesis is to develop, implement, and verify a simulation model of a

50 kVA, three-phase, three-limb power transformer. The modeling approach should be applicable

to different transformer core topologies and winding configurations. Only information that can

either be found in the data sheet or can be measured in the field without great effort should be

used. No detailed design data should be used since this information is often not available. Another

objective of the thesis is to measure the hysteresis of the core material and to implement a hysteresis

model. The finalized model has to be verified with multiple measurements to ensure the accurate

representation of various applications. The tests include short-circuit, no-load, and zero-sequence

tests. The behavior under geomagnetically induced currents has to be validated using back-to-back

tests with superimposed direct currents.

1.3 Outline of the Thesis

Chapter 2 introduces basic concepts necessary to understand not just the modeling approach but the

simulation results as well. The chapter consists of explanations of the basic transformer operating

principle, the nonlinear behavior of the ferromagnetic core, and the magnetic asymmetry resulting

from the core design.

Chapter 3 presents a short overview of possible modeling approaches before the simulation model

is developed. The chapter is completed by a description of the parameter identification process of

the developed model.

Chapter 4 presents the parameter identification process of the 50 kVA power transformer used for

this thesis. The single-phase hysteresis measurement which determines the non-linear core behavior

is explained in particular detail.

Chapter 5 compares measurements of various test scenarios to simulations of the developed model.

The conducted experiments are short-circuit tests, zero-sequence tests, no-load tests at various

voltages and frequencies, and back-to-back tests with superimposed direct currents.
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1.3 Outline of the Thesis

Chapter 6 concludes the most important findings and gives an outlook on possible further research

topics.

A conference proceeding on the topic of this thesis was published in cooperation with Dennis Albert

and Herwig Renner. This publication can be found in the Appendix
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2 Essential Transformer Basics

2.1 Transformer Theory

The basic functionality of a transformer, which works with the principle of electromagnetic induction,

is best explained with the example of an ideal single-phase transformer. The following insights are

based on [1]. A transformer is considered ideal when winding resistances, leakage flux, and core

losses are neglected. Such a transformer is illustrated in Figure 2.1. Two windings with N1 and N2

turns are linked by a mutual flux Φm.

Φm

u1 e1 e2 u2

i0

N1 N2

Figure 2.1: Ideal transformer

The first observations are conducted in no-load condition, meaning the secondary winding is left

open-circuited. The primary winding is excited with a sinusoidal voltage. This leads to an excitation

current, which sets up the mutual magnetic flux Φm. The core is considered lossless, which means

that the current i0 is a pure magnetizing current. The instantaneous electromotive force of the first

winding e1 is connected to the mutual flux the following way

e1 “ N1
dΦm

dt
(2.1)
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2 Essential Transformer Basics

This electromotive force e1 is equal to the supplied voltage u1 since the ideal transformer has no

winding resistances. This link between the supplied voltage and the mutual flux means that the flux

Φm is sinusoidal with the same frequency as u1. The product of the number of turns N1 and the

mutual flux Φm is called the magnetic flux-linkage Ψm, which can be used for an alternative notation

e1 “
dΨm

dt
(2.2)

The flux induces a voltage e2 in the second winding

e2 “ N2
dΦm

dt
(2.3)

The ratio between the induced voltages a can be derived by linking Equation 2.1 and Equation 2.3

a “
e1

e2
“

N1

N2
(2.4)

The next observation is conducted with the switch on the secondary winding closed. The current

that is now able to flow is set up according to Lenz’s law, which states that the magnetomotive

force (mmf) of the secondary winding i2N2 opposes the flux Φm. The induced voltage e1 and

therefore the supplied voltage u1 remain unchanged, which means that the mutual flux Φm can not

change. This is only possible if the primary winding draws more current to counteract the effect of

Lenz’s law. The current in the primary winding now consists of a magnetizing component and a

load component. The magnetizing current disappears if an infinitely permeable core material is

assumed, leaving only the load current. The root mean square (rms) values of the winding currents

are then linked in the following way

I1N1 “ I2N2 (2.5)

The ideal transformer can thus be described with the following equations

E1

E2
“

U1

U2
“

N1

N2
“

I2

I1
“ a (2.6)
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2.2 Magnetic Fields of the Core Material

2.2 Magnetic Fields of the Core Material

The explanations and figures of this section are based on [7]. The phenomenon of magnetic fields

can be described with two field quantities: the magnetic field intensity H in A/m and the magnetic

flux density B in T. The field intensity is associated with the movement of charge carriers, while

the flux density is associated with the force on moving charge carriers. In vacuum the two field

quantities are linked as follows

B “ µ0 ¨ H (2.7)

with µ0 “ 4π ¨ 10´7 being the vacuum permeability. This formulation has to be adapted in the

following way if a material is present

B “ µr ¨ µ0 ¨ H (2.8)

with µr being the relative permeability of the material. This formulation with a constant µr is not

usable for non-linear ferromagnets. In this case a more general formulation can be used which

utilizes the so-called magnetic polarization J

B “ µ0 ¨ H ` J (2.9)

with J having the same unit as B, T. An alternative formulation utilizes the so-called magnetization

M

B “ µ0 ¨ pH `Mq (2.10)

with M having the same unit as H, A/m. As stated previously, the ferromagnetic core material

shows a non-linear relationship between B and H. This behavior can be explained with the structure

of the ferromagnetic material that consists of multiple magnetic domains. A single domain contains

magnetic moments that are aligned in the same direction. The entirety of the domains is formed

in a way that the energy configuration is at its minimum. The magnetization process is shown in

Figure 2.2 in a simplified way. Part a) shows a ferromagnetic material that consists of four magnetic

domains. The domains are aligned in a way which leads the magnetizing moments of the domains

7



2 Essential Transformer Basics

to cancel each other out. Therefore, the material is in an unmagnetized state. The domain walls are

not rigid but are able to move if an external magnetic field is applied to the material. This process is

shown in part b) where a small external field H is applied. The domain walls move according to the

direction of the applied field and the magnetic moments of the respective domains. The walls move

even further as the applied field is increased, as seen in part c). The behavior at high fields is shown

in part d) where the two remaining domains result in a magnetization in direction of the applied

field. A further increase of the applied field leads to a rotation of the domain magnetizations, as

seen in part e).

M

H=0

a) b) c) d) e)

H H HH

Figure 2.2: Behavior of magnetic domains [7]

The material in Figure 2.2 was ideal, meaning no defects in the material were considered. Defects

limit the movement of the domain walls which causes an additional material behavior. Figure 2.3

explains how material defects influence the movement of domain walls. Part a) shows a material

with two domains and six material defects depicted as circles. The domain wall is attached to the

defects in the center of the material which prevent a free movement of the wall. Applying a small

external field leads to the bending of the domain wall, as seen in part b). The wall, however, stays

attached to the two defect sites. This type of domain wall movement is reversible, meaning that the

domain wall will return to its original position (part a) if the external field disappears. The already

explained rotation of the domain magnetization, seen in part d), is also a reversible magnetization

process. A further increase of the external field causes the domain wall to detach from the defect

sites. The domain wall is now able to move freely until it encounters further defects, as seen in part

c). This domain movement is irreversible, meaning the domain wall does not return to its original

position if the external field is removed.

These effects occurring in ferromagnetic materials cause the hysteretic relationship between the flux

density B and the field intensity H, as seen in Figure 2.4. The dashed curve represents the initial

magnetization curve that occurs if the material is excited from a demagnetized state. If an external

8



2.2 Magnetic Fields of the Core Material

a) b) c) d)

H=0 H H H

Figure 2.3: Reversible and irreversible domain movements [7]

field is applied to the material, the first domain wall movements are reversible. This corresponds to

the very slow rise in the beginning of the initial magnetization curve. A rapid rise occurs as soon as

the irreversible magnetization processes start to take place. The rotation, once again a reversible

process, only produces a slow magnetization rise. The material starts to saturate which means that

a rising H causes only a slight increase of B. A decrease of H until the material enters negative

saturation leads to the solid upper curve. A following increase of H leads to the solid lower curve.

This means that a sinusoidal excitation leads to a counterclockwise cycle.

0

Magnetic field intensity H

0

M
a

g
n

e
ti
z
a

ti
o

n
 M

initial magnetization

hysteresis loop

Figure 2.4: Ferromagnetic hysteresis

The hysteresis does not necessarily strictly follow the loop shown in Figure 2.4. Any magnetization

process depends not only on the excitation but on the previous magnetization history as well. Some

exemplary hysteresis loops are shown in Figure 2.5. The biggest possible loop is referred to as the

major loop. Any loops smaller than the major loop are called minor loops, which can be symmetric
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2 Essential Transformer Basics

or asymmetric. [8] The aforementioned effects make the prediction of the hysteresis difficult. The

dashed curve in Figure 2.5, the so called anhysteretic magnetization curve, is often used as the base

of hysteresis models. [8] The anhysteretic shows the thermal equilibrium state of the ferromagnetic

material, which is why it was referred to as the ideal magnetization [9]. The anhysteresis and

hysteresis modeling is further addressed in section 3.3.

0

Magnetic field intensity H

0

M
a
g
n
e
ti
z
a
ti
o
n
 M

major loop

anhysteretic

symmetric minor loop

asymmetric minor loop

Figure 2.5: Possible hysteresis loops. Figure based on [8]

2.3 Magnetic Asymmetry of Three-Phase Transformers

It was already shown in section 2.1 that a no-load test of an ideal single-phase transformer leads to

an excitation current. The current is a pure magnetizing current that sets up the required mmf which

then produces the magnetic flux. A BH-characteristic can be derived with the excitation current

(I9H) and voltage (U9B) of the no-load test. This identification is not as straightforward in the case

of three-phase transformers with all phases wound on a common core. The no-load phase currents

differ from the magnetizing currents that are required for the mmf of the specific transformer limb.

The same holds true for the phase powers and the true power loss of the individual transformer

limbs. This discrepancy emerges because the phase currents depend on the requirements of all core

sections, not just on the specific limb the winding is on. [1] [10]
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2.3 Magnetic Asymmetry of Three-Phase Transformers

A

iv
v

NN uv

iw
w

N

u

uu uw

B

iu

Figure 2.6: Derivation of magnetic asymmetry

This was shown in [10] for a three-limb Y-connected transformer in the following way: The investi-

gated transformer is shown in Figure 2.6. The transformer is assumed to be ideal. All windings have

the same number of turns N. The transformer is connected to a balanced, sinusoidal, three-phase

voltage source. Therefore, the magnetic fluxes ΦU, ΦV, and ΦW are balanced and sinusoidal too.

The magnetic paths of the specific limbs start and end in the points A and B. Therefore, the middle

limb has a shorter magnetic path than the two outer limbs. An mmf is required to set up the fluxes

between the points A and B. In the left limb for example, an mmf of Ni
1

U is required to produce the

flux ΦU. The instantaneous current i
1

U represents the current that is required to set up the mmf for

the left limb. As already stated, the actual phase current iU differs from the required current i
1

U. The

actually produced mmf is equal to NiU. The actual and required mmfs of the branches can be set

into relation in the following way

NiU ´ NiV “ Ni
1

U ´ Ni
1

V (2.11)

NiV ´ NiW “ Ni
1

V ´ Ni
1

W (2.12)

NiW ´ NiU “ Ni
1

W ´ Ni
1

U (2.13)

Dividing these equations by N leads to

iU ´ iV “ i
1

U ´ i
1

V (2.14)

11



2 Essential Transformer Basics

iV ´ iW “ i
1

V ´ i
1

W (2.15)

iW ´ iU “ i
1

W ´ i
1

U (2.16)

One further equation is added due to the Y-connection of the transformer

iU ` iV ` iW “ 0 (2.17)

This set of four equations can be used to derive the following formulations of the phase currents

iU “ i
1

U ´
1
3
pi

1

U ` i
1

V ` i
1

Wq (2.18)

iV “ i
1

V ´
1
3
pi

1

U ` i
1

V ` i
1

Wq (2.19)

iW “ i
1

W ´
1
3
pi

1

U ` i
1

V ` i
1

Wq (2.20)

The derivation is shown in detail for iU in Appendix A. All three currents contain the same expres-

sion which is a zero-sequence component i
1

0

i
1

0 “
1
3
pi

1

U ` i
1

V ` i
1

Wq (2.21)

This zero-sequence component causes an mmf Ni
1

0 which, even at balanced excitation, produces a

zero-sequence flux. This flux leaves the core at point A and closes itself in point B. This proves that

the actual and required currents differ which means that a regular three-phase no-load test can not

be used to derive the magnetization characteristic of the respective transformer limbs.

The effect of the zero-sequence current i
1

0 is shown in Figure 2.7 and Figure 2.8. The left figure

shows the measured ΨI-characteristics of phases U and W of a positive-sequence no-load test. The

characteristics and measured power losses differ significantly even if the true BH-characteristics

of the two limbs are nearly identical. The right figure shows the same measurement result of a

negative-sequence no-load test. The ΨI-characteristics of the phases flip if the phase sequence is

changed from positive- to negative-sequence. The zero-sequence component therefore depends on

the phase-sequence. A way to measure the true magnetization requirements despite the magnetic

asymmetry is shown in subsection 3.4.2.
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Figure 2.7: Comparison of ΨI-characteristics of phases

U and W at positive-sequence

-2 -1 0 1 2

Current in A

-1.5

-1

-0.5

0

0.5

1

1.5

F
lu

x
-l
in

k
a

g
e

 i
n

 W
b

Phase U

Phase W

Figure 2.8: Comparison of ΨI-characteristics of phases

U and W at negative sequence
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3 Theory and Methods

3.1 Transformer Modeling for Low Frequencies

The complexity of transformers makes their modeling a difficult task. The various materials used in

transformers have different frequency-dependent behaviors. The core effects have to be considered

when the investigated transients have frequencies below a few kHz. The core can, however, be

neglected at higher frequencies, while skin and proximity effects of the windings become dominant.

Therefore, the modeling approach depends on the investigated frequency range. [1]

The frequency ranges of transients can be categorized according to [11] in the following way:

• 0.1 Hz - 3 kHz: low-frequency oscillations

• 50/60 Hz - 20 kHz: slow front surges

• 10 kHz - 3 MHz: fast front surges

• 100 kHz - 50 MHz: very fast front surges

Low-frequency transients in transformers include geomagnetically induced currents (GICs), fer-

roresonance, harmonic currents, and inrush currents [5]. The core and winding representation do

not just depend on the frequency range but on the investigated tests as well. As an example, the

core can be neglected in short-circuit tests, while it is important in the simulation of ferroresonance.

Therefore, the core and winding representation can be viewed separately. [12]

According to [12], low-frequency models can be categorized into three groups:

1. Matrix representation

2. Saturable transformer component (STC)

3. Topology-based models
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3 Theory and Methods

One approach of the first group is the use of an admittance matrix to represent the transformer

rIs “ rYs ¨ rUs (3.1)

This model does not include the non-linearity of the core since the admittance matrix consists of the

measured short-circuit test results. [12]

The drawback of the missing non-linearity is overcome in the STC-model. This approach adds

the non-linearity in the form of a non-linear inductor at the star point [12]. Figure 3.1 shows a

single-phase three-winding STC-model. The non-physical location of the single magnetization

branch, however, can lead to numerical instabilities [2]. This can be overcome by the use of a

topologically-correct model.

L1 R1

Lm Rm

L2R2

L3R3

N1:N2

N1:N2

Figure 3.1: Single-phase three-winding STC-model. Figure based on [12]

3.1.1 Topology-Based Models

This group of models is derived from the core topology of the investigated transformer. One

example are duality-based models, where a magnetic circuit of the transformer is converted into an

equivalent electric circuit using the principle of duality. These transformer models reproduce each

core element individually instead of grouping them into one single magnetizing branch as in the

STC-model. Therefore, saturation effects are modeled in each core element separately. [12]

Another advantage of this approach is the consideration of magnetic coupling between phases. The

use of a single-phase representation for a three-phase transformer lacks magnetic coupling, leading

to inaccurate results in unbalanced operations. [4]
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3.2 Duality-Based Three-Limb Transformer Model

Duality-based models lack a detailed leakage model which lead to the development of hybrid

transformer models. Such models combine the topologically correct core model with a matrix

representation of the leakage inductances [13]. The hybrid model separates core and leakage

representation under the assumption that core inductances are greater than leakage inductances.

This can lead to doubtful results at deep saturation where this assumption does not hold. [14]

The magnetic coupling and the representation of every core element are important in the study of

GICs, therefore, a topology-based model based on the principle of duality is developed in this thesis.

The approach of modeling a three-limb, three-phase transformer is explained in section 3.2.

3.2 Duality-Based Three-Limb Transformer Model

The magnetic circuit of a transformer can be converted into an equivalent electric circuit using

the physically correct duality approach. This allows the transformer to be simulated using only

standard circuit elements. [2] Another advantage in this special case is that power system engineers

are more used to work in the electric rather than the magnetic domain. A duality-based model

of a three-phase, three-limb transformer with two concentric windings, as seen in Figure 3.2, is

derived in this section. The principle of duality, first introduced for transformers in [15], requires

a planar network. This means that a drawing of the circuit on a flat surface is not allowed to

have intersecting branches. A planar graph is necessary and sufficient for the derivation of a dual

circuit [16]. Transformers with more than three windings have a non-planar magnetic circuit and

therefore, an equivalent electric circuit cannot be simply derived by the principle of duality [15]. The

transformer shown in Figure 3.2 has only two windings which means that duality can be applied.

First, a magnetic circuit has to be created by approximating the magnetic field into flux tubes. The

detail level of this approximation is crucial for the model’s accuracy. [17]

Figure 3.3 shows the left limb and the attached yokes of the investigated three-limb transformer.

Two magnetic nodes are placed on either end of the limb. The magnetic field is approximated into a

main flux through the core (solid), a leakage flux between core and first winding (dashed), another

leakage flux between the two windings (dashed), and a zero-sequence flux outside of the windings

(dotted). A more detailed division of the magnetic field is possible, however, this approach is a

reasonable compromise between required data and accuracy [18].
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3 Theory and Methods

Figure 3.2: Three-phase, three-limb, two-winding transformer

Figure 3.3: Main flux paths of one limb

Rm0 �1 

�2 

Rmc1Rmlimb Rm12

Rmyoke

Rmyoke

Figure 3.4: Magnetic circuit of one limb

The flux tubes can then be converted into a magnetic circuit, with the windings being represented by

mmf-sources and the flux tubes by reluctances. Figure 3.4 shows the resulting magnetic circuit. The

hysteretic reluctances Rmlimb and Rmyoke, which represent the individual core sections, are drawn

with a superimposed hysteresis. The linear reluctances Rmc1 and Rm12 represent the leakage fluxes.

The zero-sequence flux is represented by the linear reluctance Rm0.

The second step is the derivation of the equivalent electric circuit. This can be done graphically by

placing a dot into every loop of the magnetic circuit and an additional reference point outside of the

circuit. In the duality approach the nodes/loops of one circuit turn into the loops/nodes of the other

one. The drawn dots represent the nodes of the equivalent electric circuit. [15] Neighboring nodes

are connected with lines which cross each element of the magnetic circuit. These lines represent

the branches of the electric circuit. This process is shown in Figure 3.5 for the left limb of the
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Θ1 
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Rmc1 Rm12

Rmyoke

Rmyoke

b c

ref

a

d

Rmlimb

Rm0

Figure 3.5: Derivation of the dual electric network

L12

d

ref

a
b c

Llimb LC1

LyokeL0 Lyoke

iHV

iLV

Figure 3.6: Equivalent electric circuit of one limb

transformer. The connections to the middle limb are not shown in the figure. According to [15],

the mmf and the flux rate of change of the magnetic circuit are dual to the current and voltage of

the electric circuit. This means that the mmf sources and reluctances in the magnetic domain are

replaced by current sources and inductances in the electric domain. This leads to the equivalent

electric circuit shown in Figure 3.6. The two arrows symbolize the connection to the middle limb.

Another limitation of the principle of duality is the requirement of equal turns. This can be overcome

by replacing the current sources with ideal transformers [15]. The equivalent circuit is independent

of the vector group, since the winding connections are realized outside of the ideal transformers [19].

A capacitive network for the improvement of the model’s accuracy at higher frequencies and the

winding resistances can be added outside of the ideal transformers as well [18]. The model in

this thesis merely implements the winding resistances as shown in the final electric circuit of

the three-limb transformer in Figure 3.7. The parameter estimation for this transformer model is

detailed in section 3.4.

3.3 Iron Core Modeling

The traditional way of modeling core elements with a non-linear inductor and a parallel constant

resistor is limited in its accuracy regarding the voltage- and frequency-dependent core behavior. The

constant resistor is usually adapted to fit the losses at nominal voltage. This leads to an inaccurate

loss representation at excitations other than the nominal voltage. The accuracy can be improved by
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Figure 3.7: Equivalent electric circuit of the transformer
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3.3 Iron Core Modeling

replacing the constant resistor with a non-linear one. This does not, however, solve the inaccurate

frequency-dependent representation. A hysteresis model is much better suited to represent the

voltage- and frequency-dependent core losses. [4]

One approach to represent hysteresis is the group of macroscopic models. This group uses mathemat-

ical expressions to describe the hysteresis phenomenon on a macroscopic scale without completely

neglecting material physics [20]. The big advantage over the more detailed models used by physi-

cists is that they are not as computational time-consuming [8]. Therefore, a macroscopic approach

is chosen for this transformer model. The core loss can be divided into static and dynamic loss

components. Thus, hysteresis modeling is separated into a static and dynamic model.

3.3.1 Static Hysteresis Modeling – Jiles-Atherton Model

A static hysteresis model has to replicate the major and symmetrical/asymmetrical minor loops [8].

Two of the best-known static hysteresis models are the Preisach- and the Jiles-Atherton (JA)-

model. A good introduction into the models is given in [8]. A comparison of the two approaches

in [21] concludes that Preisach is more accurate especially at producing minor loops but also more

computationally intensive. It is also stated that Preisach requires extensive measurements but little

fitting while the opposite is true for JA.

Less measurements are a big advantage of the JA-model in the case of power transformers that are

in use. Quicker and simpler measurements lead to shorter downtimes in which the transformer

has to be disconnected from the grid. This is the main reason why the JA-model is used for the

representation of static hysteresis losses in this transformer model.

Multiple mathematical descriptions of the model with slight differences can be found. The main

idea, however, stays the same. The description in this section is based on [22], while the formulas

show a slightly modified version of the model found in [23]. For more detailed explanations see [22]

and [23]. The often-mentioned physical basis of the model has to be viewed critically if a physically

correct representation is important. According to [24] it is in fact non-physical, however, the model

is still useful in circuit simulations.

The JA-model uses the anhysteretic magnetization and combines it with pinning sites that represent

defects in the material. The model creates sigmoid-shaped hysteresis loops by considering the
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3 Theory and Methods

influence of pinning sites on domain wall motions. The energy of a ferromagnetic solid is viewed to

derive a formula for the anhysteretic magnetization. The energy per unit volume of an isotropic

domain can be expressed as follows

E “ ´µ0m ¨ H (3.2)

with m being the magnetic moment per unit volume and H being the internal magnetic field inten-

sity. A ferromagnetic solid consists of multiple coupled domains. The coupling between magnetic

domains is represented by the product of the bulk magnetization M with a factor α

E “ ´µ0m ¨ pH ` αMq (3.3)

The mean-field parameter α expresses the interdomain coupling. The resulting field is termed the

effective field intensity He

He “ H ` αM (3.4)

This effective field intensity can be used to derive a magnetization. At this point only the coupling

between domains is considered. No pinning has been incorporated yet which means the material

is ideal. The expression is only valid for the ferromagnetic material in its global equilibrium state.

This state is equivalent to the anhysteretic magnetization Man. The relation of Man and He can be

simplified as

Man “ Ms ¨ f pHeq (3.5)

where f is a function that is zero when He is zero and converges to one when He approaches infinity.

Any function that fulfills these conditions can be used. The following function for Man is given in [22]

ManpHeq “ Ms

ˆ

coth
ˆ

He

a

˙

´

ˆ

a
He

˙˙

(3.6)

The function Equation 3.6 includes a new parameter a, which influences the curve shape. Figure 3.8

and Figure 3.9 show how the anhysteretic magnetization calculated with Equation 3.6 is influenced

when the values of a and Ms are varied.
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Figure 3.8: Variation of a
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Figure 3.9: Variation of Ms

The defects found in real materials interfere with domain wall motions, causing the hysteretic

behavior of the material. An example of the interfering defect sites can be shown with the initial

magnetization curve of a previously demagnetized ferromagnetic material. The initial magnetization

curve always lies below the ideal anhysteretic magnetization curve because the defect sites oppose

the movement of the domain walls. The JA-model takes two types of domain wall movements into

account: domain wall displacement and domain wall bulging. Domain wall displacement causes an

irreversible magnetization change, meaning the domain wall will stay in its position if the magnetic

field is removed. The magnetization change caused by the bulging of domain walls is reversible. The

JA-model expresses the magnetization M as the sum of an irreversible and a reversible component

M “ Mirr `Mrev (3.7)

The irreversible component is examined first. For this it is assumed that the domain wall is perfectly

rigid. It will not bulge, it can only be displaced. As already mentioned, the domain walls become

pinned at defect sites. The achieved magnetization can therefore be described as the ideal anhys-

teretic minus a component representing the loss due to the pinning of the material. The coefficient k

is introduced to describe this behavior

Mirr “ Man ´ δk
ˆ

dMirr

dHe

˙

(3.8)

The parameter δ ensures that the influence of the domain wall pinning opposes the change of

magnetization. It is +1 when dH{dt ą 0 and -1 when dH{dt ă 0. Appendix B shows the process of
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a) b)

H=0 H

Figure 3.10: Domain wall bulging [7]

how Equation 3.8 is rewritten into its final form

dMirr

dH
“

Man ´Mirr

δk´ αpMan ´Mirrq
(3.9)

However, domain walls are not rigid but flexible. The reversibility can be explained using Fig-

ure 3.10. It shows an unflexed domain wall that is pinned on two defect sites. The pinning is not

immediately overcome by an increasing magnetic field. The domain wall flexes, causing a reversible

magnetization change. The flexing continues until the domain wall breaks free from the current

pinning sites. The reversibility is implemented once again using the anhysteretic magnetization

Man. The domain walls are assumed to be unflexed at the anhysteretic magnetization. Therefore,

the sign of the reversible component depends on the difference between anhysteretic Man and

magnetization M, or alternatively between the anhysteretic Man and the irreversible magnetization

Mirr. The relation can be simplified resulting in a single coefficient c which represents how much

the domain walls flex before breaking free.

Mrev “ cpMan ´Mirrq (3.10)

This leads to the reversible component of the JA-model

dMrev

dH
“ c

ˆ

dMan

dH
´

dMirr

dH

˙

(3.11)

The irreversible (Equation 3.9) and the reversible component (Equation 3.11) can then be combined

to derive the final mathematical description of the JA-model. The derivation is shown in Appendix C.

dM
dH

“ p1´ cq
Man ´Mirr

kδ´ αpMan ´Mirrq
` c

dMan

dH
(3.12)
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Figure 3.11: Major and minor loops constructed using the JA-model

The classic JA-model using Equation 3.6 as a function for the anhysteretic magnetization contains

five parameters α, a, Ms, k, and c. A short description of the parameters is shown in Table 3.1.

Figure 3.11 shows an example of major and minor loops generated with Equation 3.12.

Table 3.1: JA parameters and physical link

Parameter Description

α represents interdomain coupling

a shapes the anhysteretic curve

Ms saturation magnetization

k represents hysteresis losses

c represents the reversibility

There are multiple approaches for the estimation of the five parameters. The knowledge of how the

parameters influence the hysteresis shape can be used to roughly fit the parameters by hand. The

influence of the parameters a and Ms on the anhysteretic magnetization calculated with Equation 3.6

was already shown in Figure 3.8 and Figure 3.9. The influence of the parameters α, k, and c is shown

in Figure 3.12 - Figure 3.14. In these figures only one hysteresis with an increased parameter value

is compared to the major loop from Figure 3.11. This was merely done to heighten visibility. A

decrease of the respective parameter values obviously results in the opposite effects.

An iterative identification process based on measurements of only one hysteresis loop was first

introduced in [23]. This method does not always converge, therefore mathematical optimization
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Figure 3.12: Variation of α
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Figure 3.13: Variation of k
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Figure 3.14: Variation of c

techniques are used to overcome this limitation and to improve the accuracy. One example of an

optimization approach is found in [25].

Multiple improvements and modifications of the classic JA-model exist. One modification prevents

non-physical behavior of the model that can occur at the loop tips as explained in [23]. The hys-

teresis in the first quadrant is observed to explain the non-physical behavior. The magnetization M

approaches the anhysteresis Man as the magnetic field intensity H is increased. When the magnetic

field intensity H is reduced, the magnetization M is reduced too. The flexed domain walls relax

at first while still staying pinned. This means that the wall motion is mostly reversible until the

domain walls become unflexed, which is the case at the anhysteretic magnetization. The model,

however, can calculate an irreversible component in this situation as well. [23] To overcome this
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problem another parameter δM can be implemented as stated in [26]

δM “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if H ă 0 and Man ´M ą 0

0 if H ą 0 and Man ´M ă 0

1 otherwise

(3.13)

The multiplication of this parameter with Equation 3.9 ensures that the irreversible component is

set to zero under these circumstances to prevent the non-physical behavior.

A modification that can be useful in some cases is the inverse JA-model. The classic approach uses

the magnetic field intensity H as an input, while the inverse uses the magnetic flux density B. The

approach used in this thesis is based on the inverse time-stepping JA-model found in [27], which

was enhanced by the implementation of Equation 3.13. The implemented JA-model can be found in

Appendix D.

The function for Man given in Equation 3.6 can be exchanged if a higher adjustability is needed.

Equation 3.14, proposed in [28], can give a more accurate model.

Man “ Ms
a1He ` He

b

a3 ` a2He ` Heb (3.14)

This equation can be used if the following constraints apply

a1 ą 0, a2 ě a1, a3 ą 0, and b ě 1.0 (3.15)

As stated before, the JA-model generates sigmoid-shaped hysteresis loops. Grain-orientated steels

used in transformers, however, have loops that widen at the shoulder and are therefore different

from the uniformly converging sigmoid-shape [29]. The accuracy can be increased by modifying the

constant parameter k to be dependent on the magnetization M, since the width depends on the

parameter k [28].

The accuracy of minor loops can be improved by either introducing scaling factors or by determining

the parameters for different excitations. The use of a scaling factor only requires the measurement

of the major loop. Multiple loops at different excitations are necessary if separate sets of parameters

are used. [25]
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3.3.2 Dynamic Hysteresis Losses

The Hysteresis losses can be split into static and dynamic components. In fact, the total energy

loss Wtot can be split into three components: a static hysteresis loss component Whys, an eddy loss

component Weddy, and an excess loss component Wexc [30].

Wtot “ Whys `Weddy `Wexc (3.16)

The total loss can not be described accurately with only a static and an eddy loss component.

The eddy loss component, which is calculated with a Maxwell equation, assumes a homogeneous

magnetic material. This is because the Maxwell equation predates the knowledge of magnetic

domains. The dynamic effect caused by the domains is considered in the excess loss component

Wexc. [29]

The two dynamic components exhibit different frequency-dependent behaviors [30]

Weddy9 f

Wexc9 f 1{2
(3.17)

Figure 3.15, which is based on a figure from [6], shows the frequency-dependent hysteresis loss and

possible hysteresis loss models. The shown modeling approaches are fitted to correctly represent

the energy loss at nominal frequency fn. The classic approach of an inductor in combination with

a loss resistor disregards the static and excess components. It underestimates the loss below fn

and overestimates loss above fn. A better approach is to use a static model to represent the static

losses in combination with a loss resistor. Following [29], this approach will be referred to as the

two-component dynamic model. This approach, while more accurate, still underestimates the loss

below fn and overestimates it above fn because it disregards excess eddy loss. Furthermore, the loss

is voltage-dependent. The use of a two-component dynamic model leads to a slight overestimation

below and significant underestimation above nominal voltage [5]. The frequency-dependent loss

behavior can only be modeled accurately if all three components of Equation 3.16 are considered.

Following [29], this approach will be referred to as the three-component dynamic model.

The separation principle in Equation 3.16 can also be applied to the magnetic field intensity leading

to the following expression [30]
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Figure 3.15: frequency-dependent model accuracy. Figure is modified based on [6]

Htot “ Hhys ` Heddy ` Hexc (3.18)

The dynamic model can be implemented with a two- or three-component approach based on

Equation 3.18. The three-component dynamic model can be implemented as follows [31], [29]

Htot “ Hhys ` keddy
dB
dt
` kexcδ

ˇ

ˇ

ˇ

ˇ

dB
dt

ˇ

ˇ

ˇ

ˇ

1
2

(3.19)

with δ being +1 for dB{dt ą 0 and -1 for dB{dt ă 0. The static component Hhys is calculated by the

inverse JA-model. The complexity of the complete model depends on the required accuracy and the

available data. The static JA hysteresis model can be improved and modified in various ways, as the

examples given in subsection 3.3.1 show. The parameter kexc can be constant [31] or dependent on B

in order to improve the voltage-dependent accuracy [29].

3.4 Parameter Derivation

The parameter derivation process consists of numerous different measurement and fitting proce-

dures. The linear parameters and can either be derived by standard tests or can be found in factory
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test protocols. The linear components of the transformer model are:

• Winding resistances RLV and RHV

• Short-circuit inductance L12 between the two windings

• Inductance LC1 between core and first winding

• Zero-sequence impedance L0

The non-linear core parameters require measurements and data beyond the standard tests.

3.4.1 Linear Parameters

The winding resistances can be measured using a direct current (DC) source according to the

standard [32]. The frequency-dependence of the winding resistance, mainly caused by the skin and

proximity effect, can be incorporated [13]. The model in this thesis, however, only includes the DC

winding resistances.

The linear inductance L12 representing the flux between the two windings can be calculated from a

short-circuit test according to the standard [32].

The inductance LC1 can not be measured directly but can be approximated based on L12 [14]

LC1 « K ¨ L12 (3.20)

with K “ 0.5 giving good results [14].

The zero-sequence inductance can be derived from zero-sequence measurements according to

the standard [32]. Depending on the winding connection the zero-sequence flux may flow partly

through the tank which is non-linear. This occurs in transformers with missing winding balancing

ampere-turns, as is the case for Yy-transformers without an additional delta winding [32]. The

non-linearity can safely be neglected according to [14], where a duality-based model is applied

to simulate a 300 kVA Yyn-transformer. This is explained with the linear behavior of the oil gap

between core and tank which outweighs the non-linear behavior of the tank. More detailed models

that include the non-linear tank as well as other structural components are possible, however, the

parameter estimation is not trivial [5].
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3.4.2 Non-Linear Core Parameters

As stated in chapter 2, the phase currents of a regular three-phase no-load test do not just depend

on the properties of their respective core section but on the other sections as well. Therefore,

the magnetic properties can not be deduced from a three-phase no-load test. Figure 3.16 shows

an approach found in [10] to measure the required excitations of two core sections without the

interference of the third. An ideal transformer without leakage flux and winding resistances is

assumed to explain the method. A sinusoidal voltage is applied to windings U and W. The magnetic

fluxes in the outer limbs will be equal, since the voltage is applied to both windings. This means that

there is no magnetic flux and mmf in the middle limb. The mmf set up in the left limb is consumed

to create the magnetic flux in the same section. Therefore, the drawn current of winding U is the

actual current needed to excite the left limb of the core. The same applies to the right limb and

winding W. In reality a small flux will occur in the middle limb. Nevertheless, this approach allows

to measure the voltage-current and therefore the flux-current properties of the core sections. [10]

An alternative method is shown in Figure 3.17. This gives the disadvantage of measuring the sum

of both excitation currents instead of the separate currents related to the individual core sections.

Yet, this method was used in this thesis because it required less modifications of the preexisting

laboratory set-up.

The measurement for the derivation of JA-parameters should be performed at low frequencies in
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Figure 3.17: Realized measurement of core properties

order to minimize dynamic effects. A welcome side effect of a lowered frequency is that a lower

voltage amplitude is required to reach the same flux amplitude. Thus, the measurements can be

possible with portable measuring devices. [33]

A method for the derivation of the dynamic loss components of a 3 kVA single-phase transformer

is shown in [31]. Hysteresis measurements at various frequencies were conducted and resulted in

wider loops as the frequency was increased. It is safe to assume that the 3 kVA transformer used

in [31] does not have a tank, which would increase the capacitive behavior at higher frequencies.

The same method might not be applicable to power transformers as considerable capacitive effects

of the tank might occur at higher frequencies. This effect is shown in Figure 3.18 for a 50 kVA power

transformer. Two minor loops at 5 Hz and 50 Hz are compared to each other. The use of minor

loops makes the effect more noticeable. The phase shift, caused by the capacitance, rotates the 50 Hz

hysteresis loop counterclockwise in comparison to the 5 Hz loop. This renders the results useless.

Additionally, such a measurement might not be possible for large power transformers outside of

laboratory settings, since a higher frequency requires a higher voltage amplitude to reach the same

flux as in the low-frequency measurement. Portable measuring devices might not be able to supply

a high enough voltage amplitude. The fitting of the dynamic hysteresis parameters can therefore

only be realized with power loss measurements, such as no-load tests at rated frequency.
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Figure 3.18: Hysteresis measurements at different frequencies
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4.1 Transformer Under Test (T74) – General Data

The transformer model from chapter 3 is tested on a three-phase, three-limb, two-winding, 50 kVA

power transformer. The topology of the transformer matches the topology of the transformer in

Figure 3.2. Table 4.1 shows the relevant nameplate data. The transformer, built in 1974, will hereafter

be referred to as T74.

The transformer has been modified in a way that allows the low-voltage winding connection to be

chosen at will [34]. All of the following measurements and simulations are based on the transformer

in YNyn0 connection. The deviation of the nameplate winding connection entails a deviation of the

voltage amplitude. If the YNyn0-transformer is excited with 400 V from the low-voltage side, the

voltage on the high-voltage side is less than the rated voltage UHV given in Table 4.1. The number of

low- and high-voltage winding turns are needed to properly represent the voltage ratio independent

of the chosen winding connection. Another requirement are the core dimensions. If the exact core

dimensions are not known, typical ratios for the specific core type can be used instead of the exact

dimensions [35]. In the case of the T74, however, all dimensions are known. Table 4.2 contains the

geometric data and number of turns of the T74. The given lengths correspond to the mean lengths

of the main magnetic flux paths as shown in Figure 4.1.

Table 4.1: Relevant nameplate data

Type f ULV UHV ILV IHV

- Hz V V A A

Yzn5 50 400 35000 72.1 0.842
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4 Measurements and Fitting

Table 4.2: Geometric transformer data

Acore lyoke llimb NLV NHV

mm2 mm mm - -

6001 237 440 102 7730

llimb

lyoke

Figure 4.1: T74 core dimensions

4.2 T74 - Linear Parameters

The derivation of the linear components is performed as explained in subsection 3.4.1. It is assumed

that there are no differences among the phases. The parameters of the individual phases are

therefore assumed to be equal. All measurements were performed on the low-voltage side of the

transformer.

The first step are the DC winding resistances. The values of the resistances of the low-voltage

winding RLV and the high-voltage winding RHV were measured previously and were provided for

this thesis.

The inductance L12 is calculated using a short-circuit test. Table 4.3 contains the rms values of phase

voltages and currents as well as the power factors of each phase. The mean values of phase voltages,

phase currents and power factors are calculated with Equation 4.1 to Equation 4.3.

ĚUSC “
UU,SC ¨UV,SC ¨UW,SC

3
“

17.590 V ¨ 18.361 V ¨ 17.557 V
3

“ 17.836 V (4.1)
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4.2 T74 - Linear Parameters

Table 4.3: Short-circuit test data

UU,SC UV,SC UW,SC IU,SC IV,SC IW,SC cospϕUq cospϕVq cospϕWq

V V V A A A - - -

17.590 18.361 17.557 70.352 65.458 70.910 0.482 0.509 0.426

ĎISC “
IU,SC ¨ IV,SC ¨ IW,SC

3
“

70.352 A ¨ 65.458 A ¨ 70.910 A
3

“ 68.901 A (4.2)

Ğcospϕq “
cospϕUq ¨ cospϕVq ¨ cospϕWq

3
“

0.482 ¨ 0.509 ¨ 0.426
3

“ 0.472 (4.3)

The mean values can then be used to calculate the short-circuit impedance L12

X12 “
ĚUSC
ĎISC

¨ Ğsinpϕq “
17.836 V
68.901 A

¨ sinp61.836˝q “ 0.228 Ω (4.4)

L12 “
X12

2 ¨ π ¨ fn
“

0.228 Ω
2 ¨ π ¨ 50 Hz

“ 726 µH (4.5)

The inductance LC1 can be approximated according to Equation 3.20 with K “ 0.5 [14]

LC1 « K ¨ L12 “ 0.5 ¨ 726 µH “ 363 µH (4.6)

As explained in subsection 3.4.1, the zero-sequence inductance can be assumed to be linear. An

open-circuit zero-sequence test conducted on the T74 transformer confirmed the near linear behavior

at the test current of 23.5 A per phase. A higher test current was not possible due to the current

limitation of the neutral connection. Table 4.4 contains the rms values of the conducted zero-

sequence test. The current Izero is the total current of all three phases combined. The supplied

voltage was adjusted by subtracting the voltage drop across the winding, leading to Uzero. The

zero-sequence impedance X0 per phase is then calculated according to [32].

Z0 “
3 ¨Uzero

Izero
“

3 ¨ 52.73 V
70.50 A

“ 2.244 Ω (4.7)
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4 Measurements and Fitting

Table 4.4: Main transformer under test (T74) zero-sequence test data

Uzero Izero Szero Pzero Qzero

V A VA W var

52.73 70.50 3784.81 2224.66 3061.97

Table 4.5: T74 linear parameters

RLV RHV L12 LC1 L0 R0

Ω Ω µH µH mH Ω

0.041 332.058 726 363 8.671 3.749

The impedance can be split into an inductance and a parallel resistance which represents the

losses

X0 “
3 ¨U2

zero
Qzero

“
3 ¨ p52.73 Vq2

3061.97 var
“ 2.724 Ω (4.8)

L0 “
X0

2 ¨ π ¨ fn
“

2.724 Ω
2 ¨ π ¨ 50 Hz

“ 8.671 mH (4.9)

R0 “
3 ¨U2

zero
Pzero

“
3 ¨ p52.73 Vq2

2224.66 W
“ 3.749 Ω (4.10)

The linear parameters of the T74 model are summarized in Table 4.5.

4.3 T74 - Non-Linear Core Parameters

The measurements of the static hysteresis losses were conducted with the measuring setup shown in

Figure 3.17. A power-amplifier capable of supplying near perfect sinusoidal voltages with constant

amplitudes was used for all measurements. The simulations, that use ideal voltage sources, are

therefore comparable to the measurements. All measurements were conducted with a measuring

device that measures the overall power, not just the fundamental power. The simulated powers were

therefore derived in the same way as with the measuring device. The used formulas are shown in
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4.3 T74 - Non-Linear Core Parameters

Appendix E. A frequency of 5 Hz was used to minimize dynamic effects for the measurement of

the static hysteresis losses. A positive side effect of low frequencies is caused by the proportionality

seen in Equation 4.11. If the frequency is lowered, the voltage amplitude has to be lowered too

for the flux amplitude to remain unchanged. Lower voltage amplitudes make the measurement

possible with portable alternating current (AC) sources. Alternatively, specialized test-devices can

have the ability to output DC-voltages to measure the core characteristics. Appendix F compares

the measurement with the AC power-amplifier to a measurement with a not yet released testing

software of a specialized transformer test-device using DC-excitation.

Φpeak9
Upeak

f
(4.11)

The supplied voltages are integrated to obtain the flux linkage Ψ. The relation between flux-

linkage Ψ and measured current I can then be used to analyze the core behavior. Figure 4.2

shows a comparison of the ΨI-characteristics measured between the phases UW, UV and VW. The

measurement shows only slight differences between the phases. Therefore, only one characteristic is

used to derive the JA-parameters for all core sections. The parameters of individual core sections

can be adjusted later if necessary.

The measured response between phases U and W was chosen arbitrarily to fit the parameters.

Figure 4.3 shows loops measured between phases U and W at 5 Hz and various excitations.
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Figure 4.2: Comparison of ΨI-characteristics measured

between different phases
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Figure 4.3: Comparison of ΨI-characteristics measured

between phases U and W at different excitations
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Only one major loop is needed to implement the JA-model in its original form shown in sub-

section 3.3.1. The parameters are fitted by recreating the measurement setup (Figure 3.17) in the

simulation model. The simulated ΨI-characteristic can then be compared to the measured charac-

teristic. The arbitrary chosen initial JA-parameters were modified by hand using the knowledge

of how the parameters influence the shape of the hysteresis (subsection 3.3.1). Figure 4.4 shows

the measured 80 V ΨI-characteristic that was used to fit the parameters. It can be seen clearly

that the measured loop in Figure 4.4 deviates from the classic sigmoid-shaped hysteresis loop

which the JA-model was developed for. The hysteresis widens noticeably at higher excitation. The

same behavior is observed in the measurement with the specialized transformer test-device seen in

Appendix F. A similar loop shape was measured on 350 MVA transformer built in 1971 [36]. The

similar age of the transformers used in this thesis (1974) and in [36] (1971) suggests that the shape

is caused by the core material of that time period. Therefore, a measuring error can be excluded.

The widening of the loop makes a good fit of the JA-parameters difficult, since a constant k is used.

Adapting the JA-parameters to fit the width at lower excitation leads to poor performance at higher

excitation and vice versa. The performance at nominal and therefore lower excitation was deemed

as more important than the performance at high saturation. A set of parameters fitted to the 84 V

measurement did not deliver satisfactory results at lower excitation voltages. A set of parameters

fitted to the measurement at 80 V lead to a much improved accuracy at lower voltages while

delivering a poor simulation when simulating the 84 V test. Nevertheless, the parameters derived

from the 80 V test were preferred, considering the improved accuracy at nominal excitation.
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Figure 4.4: ΨI-characteristic between phases U and W at 80 V
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4.3 T74 - Non-Linear Core Parameters

Table 4.6: T74 JA-parameters

α a Ms k c

- - A/m A/m A/m

0.20¨10
-3

120 1.75¨10
6

15 0.15
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Figure 4.5: Comparison of ΨI-characteristics be-

tween phases U and W at 80 V
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Figure 4.6: Comparison of currents between

phases U and W at 80 V

Figure 4.5 shows how the simulation using the parameters in Table 4.6 compares to the measurement

at 80 V. As already mentioned, the measured loop widens as it starts to saturate. The simulation

yields a much narrower loop at saturation, which leads to a underrepresentation of active power

loss. The active and reactive power loss of all executed tests are summarized in Table 4.7. The

measured and simulated currents at 80 V are compared in Figure 4.6. The simulated current is

slightly overestimated at the peaks. Apart from that, the currents are in good agreement.

Figure 4.7 shows how a simulation at 50 V with the parameters in Table 4.6 compares to the

measurement. While not perfect, the parameters deliver results at an acceptable accuracy. The

measured ΨI-loop does not yet widen as it approaches the loop tips. This leads to a more accurate

recreation of the loop areas and therefore the loss is in much better agreement as seen in Table 4.7.

The simulated current, while it recreates the general shape of the measured one, is slightly lower

at the peak as seen in Figure 4.8. The same observations apply to the test at 60 V, as shown in

Figure 4.9 and Figure 4.10.

A divide between the measured and simulated ΨI-loops can be seen in Figure 4.11. It can clearly be
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4 Measurements and Fitting

Table 4.7: Measured and simulated powers of the 1-phase test

U Pmeas Qmeas Smeas Psim Qsim Ssim

V W var VA W var VA

50 6.15 28.18 28.84 7.18 26.51 27.47

60 9.84 74.41 75.06 8.72 63.34 63.93

70 16.54 182.51 183.26 10.56 163.29 163.63

80 32.65 549.26 550.23 16.56 577.68 577.92

84 49.96 1027.47 1028.69 37.87 1419.11 1419.61
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Figure 4.7: Comparison of ΨI-characteristics be-

tween phases U and W at 50 V
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Figure 4.8: Comparison of currents between

phases U and W at 50 V
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Figure 4.9: Comparison of ΨI-characteristics between

phases U and W at 60 V
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Figure 4.10: Comparison of currents between

phases U and W at 60 V
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Figure 4.11: Comparison of ΨI-characteristics be-

tween phases U and W at 70 V
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Figure 4.12: Comparison of currents between

phases U and W at 70 V

seen that the measured loop starts to widen as it starts to saturate. This divide can also be seen

in Table 4.7, where the measured and simulated active power loss differ significantly at 70 V. The

current comparison in Figure 4.12 shows a slight underestimation of the simulated current peak.

The measured ΨI-characteristics of the different phase connections do not differ significantly, as

already shown in Figure 4.2. Be that as it may, slight differences can still result in unsatisfactory

results of individual phases. Ideally, the identified parameters in Table 4.6 would be compared to a

low-frequency three-phase no-load test. The response of every phase could then be compared to the

simulation. Differences that may arise between phases could then be eliminated with adjustments

to the JA-parameter of the affected core sections. In the case of the T74, however, such a test

results in long transient oscillations. Such a measurement requires a long measuring duration.

Furthermore, this measurement might not be feasible for large power transformers outside of

laboratory settings.

Another obstacle is the identification of the dynamic hysteresis losses, as already explained in

subsection 3.4.2. This in combination with the not perfect implementation of the static hysteresis

loss lead to the conclusion that the more accurate three-component dynamic model is unreasonable.

Therefore, only the eddy component is implemented in the form of a resistance in parallel to the

JA-components.

The JA-parameter adjustment of the individual limbs and the addition of the dynamic loss resistance

is conducted using a single three-phase no-load test at rated frequency. Figure 4.13 to Figure 4.15
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Figure 4.13: ΨI-characteristics of phase U with identical

JA-parameters

-2 -1 0 1 2

Current in A

-1.5

-1

-0.5

0

0.5

1

1.5

F
lu

x
-l
in

k
a
g
e
 i
n
 W

b

measured

simulated

Figure 4.14: ΨI-characteristics of phase V with identical

JA-parameters

show the comparison between the measured and simulated ΨI-characteristics of the three phases.

The different loop widths are caused by the magnetic asymmetry, as explained in section 2.3. It

is obvious that the simulated loops differ from the measured loops, since no dynamic hysteresis

loss is incorporated yet. Therefore, the simulation yields narrower loops. The simulated curve in

Figure 4.13, while it may look like a regular loop, has flipped upward and downward curves. This

means that the lower curve represents a negative change of magnetization, while the upper curve

represents a positive change of magnetization. The two curves cross at high saturation. This behavior

is caused by the magnetic asymmetry, since all core sections simulate the identical hysteresis loop

in Figure 4.16.

The first step is to ensure that the amplitudes of the simulated phase currents match the measured

current amplitudes. Figure 4.14 shows that the simulation yields too low current amplitudes in

phase V. This can be corrected by lowering the Ms-parameter of the middle limb from 1.75¨10
6 A/m

to 1.63¨10
6 A/m. This adjustment causes the middle limb to saturate at a lower excitation. The

α-parameter was increased from 0.20¨10
-3 to 0.24¨10

-3 which causes the loop to slightly rotate

counterclockwise. Table 4.8 summarizes the adjusted JA-parameters for the middle limb. Figure 4.17

to Figure 4.19 show the ΨI-characteristics of all three phases with the adjusted parameters. The

adjustment does not change the responses of phases U and W significantly while improving the

response of phase V. The simulated hysteresis loops of the adjusted limb and all other core sections

are shown in Figure 4.20.
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Figure 4.15: ΨI-characteristics of phase W with identical

JA-parameters
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Figure 4.16: Identical BH-characteristic of all core

elements

Table 4.8: Adjusted JA-parameters of the middle limb

α a Ms k c

- - A/m A/m A/m

0.24¨10
-3

120 1.63¨10
6

15 0.15
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Figure 4.17: ΨI-characteristics of phase U with adjusted

JA-parameters
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Figure 4.18: ΨI-characteristics of phase V with adjusted

JA-parameters
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Figure 4.19: ΨI-characteristics of phase W with adjusted

JA-parameter
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Figure 4.20: Original and modified BH-characteristics of

the middle limb

Table 4.9: Loss resistances of the core elements

Rlimb Ryoke

Ω Ω

2272 4219

The next step is the fitting of the dynamic losses. As already explained, the more simple two-

component dynamic hysteresis model is chosen, which can be derived using a single no-load

measurement at rated frequency and voltage. The dynamic loss is implemented by linear resistors in

parallel to every JA-element. The resistance is then fitted to match the simulated active power loss

to the measurements. The different lengths of limb and yoke elements lead to separate values for

each type of core section. The values of the loss resistances are summarized in Table 4.9. Figure 4.21

to Figure 4.23 show the comparisons of the measurements and the finalized simulation model. The

area of the simulated ΨI-characteristic of phase U is smaller than area of the measurement, while

the opposite is true for phase W. The differences balance each other out, leading to an accurate

reproduction of the total active loss. The results will be shown in more detail in chapter 5.
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Figure 4.21: ΨI-characteristics of phase U with added

dynamic loss
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Figure 4.22: ΨI-characteristics of phase V with added

dynamic loss
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Figure 4.23: ΨI-characteristics of phase W with added dynamic loss
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5 Simulation Results T74

5.1 Short-Circuit Test

The short-circuit test was conducted on the low-voltage side with the high-voltage windings short-

circuited as seen in Figure 5.1. Figure 5.2 shows the supplied voltages of the measurement (solid

line) and the simulation (dashed line). The power-amplifier was not able to supply a jitter-free

sinusoidal voltage in this measurement setup. The measured voltage waveform, however, does not

deviate significantly from the simulated voltage. Figure 5.3 compares the measured short-circuit

currents (solid line) and the simulated currents (dashed line). The simulation yields slightly delayed

currents. The current in phase V is overestimated slightly by the simulation. This is caused by the

approach described in section 4.2, where the median short-circuit impedance is used for all phases.

The accuracy can be further increased by the implementation of separate short-circuit impedances

for the individual phases.
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Figure 5.1: Short-circuit measurement setup
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Figure 5.2: Phase voltages of the short-circuit test
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Figure 5.3: Phase currents of the short-circuit test

5.2 Zero-Sequence Test

The zero-sequence test was conducted as seen in Figure 5.4. The zero-sequence impedance of

Yy transformers can be derived using multiple measurement setups, according to [32]. The zero-

sequence impedance in this model represents the zero-sequence flux path in Figure 3.3. This flux

leaves the core, enters the tank, and closes itself in the core again. This behavior is represented by

the open-circuited zero-sequence test. Figure 5.5 shows the measured (solid line) and simulated

(dashed line) voltages. The current waveforms in Figure 5.6 show that the simulation (dashed line)

underestimates the current amplitude compared to the measurement (solid line). The measurement

revealed a minor non-linearity, which might be the cause of the amplitude deviation. This non-

linearity is deemed to be insignificant in the parameter estimation process, since the deviation is

tolerable.
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Figure 5.4: Zero-sequence measurement setup
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Figure 5.5: Voltages of the zero-sequence test
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Figure 5.6: Currents of the zero-sequence test
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Figure 5.7: No-load measurement setup
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Figure 5.8: No-load currents of phase U
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Figure 5.9: No-load currents of phase V

5.3 No-Load Test at Rated Frequency

The no-load test, seen in Figure 5.7, was conducted at rated frequency and voltage. The measured

(solid) and simulated (dashed) current waveforms of phases U, V, and W are shown in Figure 5.8,

Figure 5.9, and Figure 5.10 respectively. The differing current amplitudes, caused by a combination

of the magnetic asymmetry and hysteresis, are predicted accurately in the simulation. The general

shape of the current waveforms is in good accordance with the measurements. This proves the

applicability of the single-phase hysteresis measurement in section 4.3. The accuracy could be

further increased with improvements to the hysteresis model.
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Figure 5.10: No-load currents of phase W

5.4 Voltage-Dependent No-Load Loss

The initial fitting of the dynamic hysteresis loss was performed at 1 pu (230 V). No-load tests at

various excitation voltages were conducted to investigate the representation of voltage-dependent

power loss of the model. The voltage was varied from 0.87 pu to 1.13 pu (200 V - 260 V). The

measured and simulated powers are summarized in Table 5.1. As already mentioned in section 4.3,

a measuring device capable of measuring not just the fundamental, but the overall power, was used.

All presented values correspond to the overall power. The formulas utilized by the measuring device,

shown in Appendix E, were also used in the simulation. Figure 5.11 compares the measured (cross

markers) and simulated (circle markers) active power in dependence of the supplied excitation volt-

age. The dashed lines are polynomials of second order fitted to the measurements and simulations

respectively. The two curves cross each other approximately at a voltage of 1 pu, since the dynamic

loss components Ryoke and Rlimb are fitted to represent the behavior correctly at nominal voltage.

The simulation data shows a linear relation between active power and supplied excitation voltage.

This leads to the overestimation of losses below nominal power and underestimation of losses above

nominal voltage. The deviation between measured and simulated data increases significantly above

nominal voltage, as mentioned in [5]. Figure 5.12 shows the voltage-dependent reactive power. The

cross markers represent the measured data and the circle markers represent the simulated data.

The dashed curves are polynomials of second order fitted to the measurement and simulation data

respectively. The voltage-dependent reactive power loss is represented more accurately, however,

the simulations deliver overestimations over all measured voltages. The core parameters were
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Table 5.1: Measured and simulated voltage-dependent no-load losses

U U Pmeas Qmeas Smeas Psim Qsim Ssim

V pu W var VA W var VA

200 0.87 126.74 256.88 286.44 139.72 280.49 316.14

205 0.89 134.15 300.60 329.18 145.36 319.95 354.49

210 0.91 141.76 346.23 374.12 151.07 365.34 398.77

215 0.93 149.77 404.36 431.20 156.87 417.67 450.01

220 0.96 158.15 465.42 491.56 162.73 478.62 509.84

225 0.98 169.94 538.28 564.47 168.64 549.92 580.06

230 1.00 177.19 623.59 648.27 174.60 633.89 662.99

235 1.02 186.83 721.07 744.88 180.61 733.62 761.74

240 1.04 202.45 834.94 859.13 186.63 853.94 881.15

245 1.07 214.36 970.37 993.76 192.66 1000.53 1026.94

250 1.09 225.95 1129.84 1152.22 198.67 1182.67 1208.42

255 1.11 239.95 1323.81 1345.39 204.66 1414.67 1439.92

260 1.13 260.74 1556.06 1577.76 210.61 1721.25 1746.21

fitted to the active power loss at nominal voltage, which resulted in a slight overestimation of

reactive loss even at nominal voltage. The complex power is shown in Figure 5.13. The results

show the model’s inability to correctly represent the voltage-dependent active power loss when

two-component hysteresis model is used.

5.5 Frequency-Dependent No-Load Loss

No-load tests with varying excitations and frequencies were conducted to investigate the frequency-

dependent power losses. Solely varying the frequency would lead to different flux amplitudes.

Therefore, the excitation voltages were adapted to the frequencies according to Equation 4.11. This

adaption results in a constant magnetic flux amplitude over all measured frequencies. This means

the measured and simulated powers are only frequency-dependent. Table 5.2 summarizes the

measurement and simulation data. As mentioned before, the shown values correspond the overall

powers. Figure 5.14 contains the measured (cross markers) and simulated (circle markers) active
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Figure 5.11: Voltage-dependent active power
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Figure 5.12: Voltage-dependent reactive power
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Figure 5.13: Voltage-dependent complex power

55



5 Simulation Results T74

Table 5.2: Measured and simulated frequency-dependent no-load losses

f f U Pmeas Qmeas Smeas Psim Qsim Ssim

Hz pu V W var VA W var VA

35 0.7 161 101.98 493.99 504.42 97.92 443.48 457.91

40 0.8 184 125.08 550.27 564.31 121.17 506.92 525.51

45 0.9 207 152.02 593.90 613.05 146.73 570.39 593.85

50 1.0 230 178.03 625.46 650.30 174.60 633.89 662.99

55 1.1 253 206.35 649.52 681.51 204.79 697.34 732.88

55 1.2 276 237.76 676.40 716.97 237.30 760.83 803.69

60 1.3 299 268.34 694.85 744.87 272.12 824.30 875.39

power over the frequency in per unit. The dashed lines represent polynomials of second order of

the measurement and simulation data respectively. The simulation slightly underestimated the

active power below nominal frequency and slightly overestimated the loss above nominal frequency.

In general, however, the frequency-dependent active power loss is represented correctly by the

simulation model. Figure 5.15 shows the measured (cross markers) and simulated (circle markers)

reactive power over various frequencies. The dashed lines are once again polynomials of second

order fitted to the measurement and simulation data respectively. The curves cross each other

approximately at nominal voltage. The simulation data show a linear relation between reactive

power and frequency due to the use of the loss resistances Ryoke and Rlimb. The measurement shows

the behavior as seen in Figure 3.15, where not only a dynamic eddy component dependent of the

frequency but a dynamic excess component dependent on the frequency to the power of 0.5 occurs.

Merely using the eddy component in the form of the loss resistances fitted to nominal frequency

leads to an underestimation of reactive power below nominal frequency and overestimation of

reactive power above nominal frequency. The discrepancy between the measured and simulated

reactive power can also be seen in the complex power, as shown in Figure 5.16. The accuracy of

the simulation can be improved by expanding the model to include a three-component hysteresis

representation.
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Figure 5.14: Frequency-dependent active power
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Figure 5.15: Frequency-dependent reactive power
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Figure 5.16: Frequency-dependent complex power
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5.6 Back-to-Back (B2B)

The back-to-back test setup seen in Figure 5.17 was chosen to test the model’s general capability

to reproduce the behavior of the transformer under DC-excitation. A similar but not identical

YNyn0 transformer built in 1990 was connected to the T74 transformer. The second transformer

will hereafter be referred to as T90. A DC-voltage source can be connected on high-voltage potential

to the neutral points between the two transformers. This source can then be used to superimpose

a DC-excitation on high-voltage potential. The results in this section only investigate the general

capability of the simulation, since no separate model for the T90 transformer was derived. An exact

copy of the T74 model was used instead. Therefore, the results can not be used as a measure of

accuracy. A model of the second transformer should be derived to further investigate how accurate

the simulation is.
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Figure 5.17: Back-to-back measurement setup

Multiple measurements with various DC-amplitudes were conducted to investigate the model.

Figure 5.18 shows the measured current over time when no DC is superimposed. The simulated

currents over time of this scenario are shown in Figure 5.19. The amplitudes of the simulated

B2B-currents are twice as high as the amplitudes of the regular no-load simulation seen in Figure 5.8

- Figure 5.10. This is caused by the use of the two identical T74-models. The measured currents in

Figure 5.18 indicate that the newer T90 transformer has lower no-load currents at rated excitation

than the T74 transformer. The comparison of both waveforms confirms the model’s ability to recreate

the general current shapes.

A measurement of the low-voltage currents with superimposed direct currents ranging from 100 mA
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Figure 5.18: Measured B2B-currents without any DC-

current
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Figure 5.19: Simulated B2B-currents without any DC-

current

to 1900 mA in steps of 100 mA was conducted to investigate the behavior under DC-excitation. The

resulting current of phase U is shown in Figure 5.20. The other phases produce nearly identical

waveforms. The simulation result of phase U with the same direct currents is shown in Figure 5.21.

As before, the amplitudes differ, since no specific model was developed for the T90 transformer. Both

figures show a rise of the phase currents as the direct current is increased. A half-cycle saturation is

visible in both figures, as higher amplitudes are achieved during the positive half-cycle. An example

of the measured currents is shown in Figure 5.22, where a 1400 mA direct current is superimposed.

Obviously, the same DC-excitation leads to different amplitudes in the simulation. Therefore, a

simulation with similar amplitudes is used to compare the waveforms. The result of a simulation

with a superimposed direct current of 1900 mA is shown in Figure 5.23.

The active and reactive power loss is shown in Figure 5.24 and Figure 5.25 respectively. Unlike the

real measurement, the simulated active power decreases as the direct current rises. The phase shift

between the simulated voltages and currents approaches 90° as the direct current is increased, which

explains the decrease in active power. This, however, is true for the measurement as well and yet the

measured active power increases. This discrepancy might be explained by a missing loss component

in the simulation model. The general behavior of the reactive loss is recreated correctly. Once again,

the simulation results were derived using two identical models of the T74 transformer while the

measurements were conducted with the T74 and T90 transformers. A deviation of amplitudes was

therefore expected. Be that as it may, the results prove the applicability of the simulation model for

GIC-studies.
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Figure 5.20: Measured B2B-currents
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Figure 5.21: Simulated B2B-currents
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Figure 5.22: Measured B2B-currents with 1400 mA DC
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Figure 5.23: Simulated B2B-currents with 1900 mA DC
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Figure 5.24: DC-dependent active power
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Figure 5.25: DC-dependent active power
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6 Discussion and Outlook

On the development of the model

The classic way to model a transformer is the well-known single-phase equivalent T-model. This

model, however, lacks magnetic coupling [4] and is only valid in steady-state [3]. A transformer

model capable of reproducing low-frequency transients is derived in section 3.2. This model uses the

topologically correct duality-approach which converts the magnetic circuit of the transformer into

an equivalent electric circuit [15]. A model of a three-phase, three-limb, two-winding transformer is

derived in section 3.2. The same approach can be used to derive a five-limb transformer. A third

winding can be added with the approach shown in [37]. Therefore, the duality approach can be

applied to a multitude of transformer core and winding configurations.

The modeling of the iron core is addressed in section 3.3. The derived model in this thesis implements

a hysteresis model in the form of an inverse JA-model. The JA-model replicates the static hysteresis

loss. The dynamic hysteresis loss can be incorporated with a two- or more accurate three-component

approach, as seen in subsection 3.3.2. The model in this thesis uses the simpler two-component

model which is implemented with constant loss resistances in parallel to every JA core element.

Depending on the investigated low-frequency study, a static hysteresis model might not be necessary.

In such cases a simpler piecewise linear approximation can be used. [5] The importance of a dynamic

hysteresis model can depend on the investigated transient as well. However, the opinions on the

importance of dynamic hysteresis modeling are divided [5]. The lack of definite answers makes this

topic interesting for future research.

On the parameter derivation

The derivation of the linear parameters for the model of the T74 is straightforward, as seen in

section 4.2. The short-circuit and zero-sequence impedance can be derived by standard tests.

The more interesting measurements are associated with the identification of the non-linear core

61



6 Discussion and Outlook

loss. Two possible approaches are shown and explained in subsection 3.4.2. section 4.3 shows

the execution of the measurement and fitting process. It is shown that the behavior of the core

can be measured with a low-frequency sinusoidal voltage source. The measurement is possible

with portable measuring devices, since a lower frequency is accompanied with a lower voltage

amplitude [33]. The measurement returned a rather unusual looking characteristic as seen in

Figure 4.4. The loop widens as it starts to saturate. This makes the fitting of the parameters difficult,

since the JA-model was developed for sigmoid-shaped hysteresis loops [22]. The accuracy could be

improved by making the parameter k, which is responsible for the width of the loop, dependent

on the excitation. Such a modification is shown in [28]. Many modifications of the JA-model exist

that extend the model or improve the accuracy. One main goal of this thesis, however, was to

show the general applicability of the JA-model in the case of a three-limb transformer. A highly

accurate replication of the measurements was not a top priority. Therefore, a very basic version of

the JA-model is used. Nevertheless, the measurements and simulations are in good agreement. For

future research more time should be invested in a optimization procedure of the JA-parameters. A

fitting by hand is possible and can lead to acceptable results as shown in section 4.3, however, an

automated optimization procedure can drastically improve user-friendliness.

The same hysteresis measurement is not repeatable at higher frequencies to derive the dynamic

hysteresis loss components. The capacitive influence of the transformer at higher frequencies

significantly affects the shape of the measured hysteresis, rotating it counterclockwise. Therefore,

the dynamic loss components can not be fitted to the measured shape of the hysteresis. It is possible

to fit the parameters to no-load test data measured at different excitations and frequencies. Results

of these measurements are shown in chapter 5, however, such data might not be available and is

difficult to measure outside of laboratory settings. Therefore, the simpler two-component dynamic

model was used, which can be fitted to standard no-load test data.

On the simulation results

Various simulations and measurements of T74-transformer were compared in chapter 5. All phases

were assumed to be equal in the parameter derivation process. The design of transformers, which

also causes the magnetic asymmetry, leads to unavoidable differences between the phases. This is

seen in the comparison of the measured and simulated short-circuit test. The simulation returns a

slightly too high short-circuit current in phase V. This can easily be corrected by the implementation

of phase-specific short-circuit impedances. The difference between measured and simulated current,
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however, is not significant enough to make this adjustment necessary.

The zero-sequence test can show a non-linear behavior in Yy-transformers as explained in the

standard [32]. The zero-sequence measurement of the T74-transformer does in fact show a slight

non-linearity. This is, however, insignificant and is therefore ignored in the parameter identification

process. The measurement confirms the assertion in [14], that the non-linearity can safely be

neglected.

The simulation over various voltages shows the inability of the two-component hysteresis model

to accurately represent the active power loss. The parallel loss resistance overestimates the active

loss below nominal voltage and underestimates it above nominal voltage. The reactive power is in

good accordance over a wide voltage range. The accuracy of the active power can be increased if

a three-component hysteresis model with an excitation-dependent excess loss component is used

instead.

The frequency-dependent no-load loss comparison shows that the model is able to reproduce the

active power over a wide frequency range. The reactive power, however, is underestimated below

and overestimated above nominal frequency. Again, a three-component hysteresis model is able to

represent the losses more accurately.

The general ability of the model to represent low-frequency transients was tested with a back-to-back

(B2B) test, which allows to superimpose direct currents. It is important to note that no simulation

model of the second transformer was derived. Instead, a one-to-one copy of the T74 model was

used. This obviously makes an evaluation of the simulation accuracy nonsensical. The results can,

however, show if the general transient response is reproduced correctly. The simulation model is

able to reproduce the general behavior as the results show. The only major discrepancy can be

seen in the measured active power. The simulated power slowly decreases as the direct current is

increased, while the measured active power rises. The cause for this is not known and requires

further research. Furthermore, a model of the second transformer should be derived in order to

assess the simulation accuracy.

On the implementation of the model

The model was implemented in Matlab Simulink 2019a. It was tested with the Simscape Electrical

library as well as the Specialized Power Systems library. Both libraries are suitable and delivered
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identical results. However, the model implemented in Specialized Power Systems is prone to

instabilities. The use of the Simscape Electrical library is therefore recommended.

On the application in transmission grid simulations

The three-component hysteresis model gives a visible advantage when it comes to voltage- and

frequency-dependent loss representation. Some transient studies such as ferroresonance might even

require a detailed three-component model [5]. However, considering the required effort, such a

model is not feasible for transmission grid operators. It was shown that the hysteresis measurement

is not usable at higher frequencies due to the capacitive influence as the frequency rises. The

dynamic components can theoretically be fitted to loss measurements using various voltages and

frequencies. Such measurements are not technically feasible for large power transformers outside of

specialized laboratory settings. Datasheets usually provide no-load loss data at 90 %, 100 %, and

110 % of nominal voltage. This can be used to fit the excess component. The lack of frequency-

dependent data, however, makes the verification at different frequencies not possible. This means a

three-component dynamic model can hardly be implemented for already installed equipment. This

assessment leads back to the two-component model which can be implemented with considerably

less effort. This approach results in a massive improvement in accuracy over the classic single-phase

equivalent models at a reasonable cost. The only out of ordinary measurement is the hysteresis

measurement which can be measured in mere minutes using modern transformer testing utilities.

The two-component hysteresis model gives the most cost-effective results for transmission grid

operators.
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Appendix A

Derivation of the Magnetic Asymmetry

The derivation is based on [10]. The following equations are given

iU ´ iV “ i
1

U ´ i
1

V (A.1)

iV ´ iW “ i
1

V ´ i
1

W (A.2)

iW ´ iU “ i
1

W ´ i
1

U (A.3)

iU ` iV ` iW “ 0 (A.4)

Equation A.1 can be rearranged to

iU “ i
1

U ´ i
1

V ´ iV (A.5)

The exchange of iV with Equation A.4 leads to

iU “ i
1

U ´ i
1

V ´ iU ´ iW (A.6)

Exchanging iW with Equation A.3 leads to

iU “ i
1

U ´ i
1

V ´ iU ´ i
1

U ´ i
1

W ´ iU (A.7)
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Which can be rearranged to

3iU “ 2i
1

U ´ i
1

V ´ i
1

W (A.8)

Adding and subtracting i
1

U on the right side results in

3iU “ 3i
1

U ´ i
1

U ´ i
1

V ´ i
1

W (A.9)

Dividing both sides by three delivers the final form of the equation for the first phase

iU “ i
1

U ´
1
3
pi

1

U ´ i
1

V ´ i
1

Wq (A.10)
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Appendix B

Derivation of the JA Equation 3.9

The following two equations of the effective field intensity He and the irreversible magnetization

Mirr are given

He “ H ` αM (B.1)

Mirr “ Man ´ δk
ˆ

dMirr

dHe

˙

(B.2)

Equation B.2 can be rearranged in the following way

dMirr

dHe
“

Man ´Mirr

δk
(B.3)

Inverting both sides of the equation and inserting Equation B.1 leads to

dpH ` αMq
dMirr

“
δk

Man ´Mirr
(B.4)

The left side of the equation can then be rewritten into

dH
dMirr

` α “
δk

Man ´Mirr
(B.5)
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Subtracting α on both sides and converting the right side of the equation to a common denominator

leads to

dH
dMirr

“
δk´ αpMan ´Mirrq

Man ´Mirr
(B.6)

Inverting both sides leads to the final equation

dMirr

dH
“

Man ´Mirr

δk´ αpMan ´Mirrq
(B.7)
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Appendix C

Derivation of the JA Equation 3.12

The following two equations of the irreversible rate of magnetization change and reversible rate of

magnetization change are given

dMirr

dH
“

Man ´Mirr

δk´ αpMan ´Mirrq
(C.1)

dMrev

dH
“ c

ˆ

dMan

dH
´

dMirr

dH

˙

(C.2)

The complete rate of magnetization change is the sum of both components

dM
dH

“
dMirr

dH
`

dMrev

dH
(C.3)

Inserting Equation C.2 into Equation C.3 leads to

dM
dH

“
dMirr

dH
` c

ˆ

dMan

dH
´

dMirr

dH

˙

(C.4)

The expansion of the product on the right side leads to the following expression

dM
dH

“ p1´ cq
dMirr

dH
` c

dMan

dH
(C.5)
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Inserting Equation C.1 into Equation C.5 leads to the final equation of the JA-model

dM
dH

“ p1´ cq
Man ´Mirr

δk´ αpMan ´Mirrq
` c

dMan

dH
(C.6)
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Appendix D

Implemented Inverse JA-Model

The implemented inverse JA-model is based on the time-stepping approach found in [27]. It was en-

hanced by the parameter δM based on [26]. This parameter prevents possible non-physical behavior

at the loop tips. The values of Hptq and Bptq are the known values from the preceding step which

are used to calculate the values of the current step.

∆B “ Bpt` ∆tq ´ Bptq (D.1)

Mptq “
Bptq
µ0

´ Hptq (D.2)

Heptq “ Hptq ` αMptq (D.3)

Manptq “ Ms

„

coth
Heptq

a
´

a
Heptq



(D.4)

dMan

dHe
“

Ms

a

«

1´ coth2 Heptq
a

`

ˆ

a
Heptq

˙2
ff

(D.5)

Mirrptq “
Mptq ´ cManptq

1´ c
(D.6)
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δM “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if ∆B ă 0 and Manptq ´Mptq ą 0

0 if ∆B ą 0 and Manptq ´Mptq ă 0

1 otherwise

(D.7)

dMirr

dBe
“ δM

Manptq ´Mirrptq
µ0kδ

(D.8)

dM
dB

“
p1´ cqdMirr

dBe
` c

µ0

dMan
dHe

1` µ0p1´ αqp1´ cqdMirr
dBe

` cp1´ αqdMan
dHe

(D.9)

Mpt` ∆tq “ Mptq `
dM
dB

∆B (D.10)

Hpt` ∆tq “
Bpt` ∆tq

µ0
´Mpt` ∆tq (D.11)
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Appendix E

Power Calculation

The following formulas show how the measuring device calculates the AC-power. The same ap-

proach was used to calculate the simulation data. The active power is calculated according to the

next formula

P “
1
N

N
ÿ

n“0

urns ¨ irns (E.1)

The apparent power is calculated according to

S “ URMS ¨ IRMS (E.2)

The reactive power can then be calculated with

Q “
a

S2 ´ P2 (E.3)
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Appendix F

Hysteresis Measurement With a Transformer Test

Device

The hysteresis of the T74-transformer was also measured with a yet unreleased trial software of a

specialized transformer testing device. This device uses a DC-excitation to measure the hysteresis.

The software was still in development which lead to limitations in the measurement process. The

device was only able to deliver measurements on the high-voltage side. The measurement in

Figure F.1 therefore shows the measured ΨI-characteristic measured from the high-voltage side. The

widening of the loop is visible even if not as distinct. The measurement with the low-frequency

sinusoidal excitation on the low-voltage side is shown in Figure F.2.
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Figure F.1: Measured hysteresis using DC-excitation
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Figure F.2: Measured hysteresis using AC-excitation
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Appendix F Hysteresis Measurement With a Transformer Test Device

The two measurements were conducted on different voltage potentials. This makes a conversion

of the measured values necessary before the two loops can be compared. The flux-linkages were

converted to the flux using the individual number of winding turns. The measured high-voltage

current was converted to the low-voltage side using the winding ratio. The now comparable loops

are shown in Figure F.3. It is obvious that the loop of the test device saturates farther. The two

measured loops are in good accordance, besides the different current peaks.
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Messdaten basierte Modellierung von Transformatoren
Measurement based transformer modelling approach

Dennis Albert*, Dragan Maletic*, and Herwig Renner
Institute of Electrical Power Systems, Graz University of Technology, 8010 Graz, Austria, dennis.albert@tugraz.at

Kurzfassung

Die Modellierung von Transformatoren und deren Interaktion mit dem Stromnetz ist entscheidend für die Aufrechterhal-
tung eines zuverlässigen und sicheren Stromnetzes. Allerdings sind die verfügbaren Transformatorendaten oft unvoll-
ständig, fehlen oder sind nicht zugänglich. Bisher wurden verschiedene Ansätze zur Modellierung von Transformatoren
mit unterschiedlichen Daten und Detaillierungsgraden veröffentlicht. Das Ziel unseres Ansatzes ist es, möglichst schnell
und einfach ein Transformatormodell zu erstellen, um das Transformatorverhalten und die Netzinteraktion zu unter-
suchen. Die erforderlichen Messungen können einfach im Feld oder im Umspannwerk durchgeführt werden. Die Mes-
sungen werden zur Parameteridentifikation des Jiles-Atherton-Hysterese Modells verwendet. Der Modellansatz basiert
auf dem Dualitätsprinzip, das den magnetischen Kreis in sein elektrisches Äquivalent transformiert. In dieser Arbeit
demonstrieren wir diesen Ansatz am Beispiel eines 3-phasigen 3-schenkligen 50 kVA Leistungstransformator. Die Sim-
ulationen und Messung zeigen eine Übereinstimmung von mindestens 97 %. Daher kann dieser Ansatz in Industrie und
Forschung verwendet werden, um Transformatoren zu modellieren und deren Verhalten und Netzinteraktion zu unter-
suchen.

Abstract

Modelling transformers and the power grid interaction is crucial to maintain a reliable and safe power grid. However,
often the available transformer data is incomplete, missing or not accessible. Different approaches have been published
for modelling transformers with different amount of data and degree of detail. The aim of this approach is, to easily
setup a fast transformer model to study the transformer behaviour and grid interaction. The required measurements can
be done easily in the field or substation. The measurements are used to setup the Jiles-Atherton hysteretic model. The
model approach is based on the duality principle, transforming the magnetic circuit into its electric equivalent. In this
work we demonstrate this approach on a 3-phase 3-limb 2-winding 50 kVA power transformer. The correlation between
simulation and measurement are at least 97 %. Therefore, this approach can be used in industry and research to model
transformers and study their behaviour and grid interaction.

1 Introduction

Transformers are a key component in our electrical trans-
mission grid. Transformer outages can affect a geograph-
ically large area and can have a major economical impact
[1]. To ensure a safe, reliable and quiet operation, digital
transformer models are used to study the transformer be-
haviour and the interaction with the power grid. Especially
the reactive power consumption of the transformer is of
interest during increased low frequency transformer neu-
tral point current (LFC). LFC in the transformer neutral
point current can be caused by geomagnetically induced
currents (GIC) or man-made systems, such as DC trans-
portation systems [2, 3]. These LFC can cause transformer
half-cycle saturation. During the saturation of the trans-
former the reactive power demand increases [4]. If the re-
active power demand of a large number of transformer in
the power grid take place at the same time, voltage insta-
bility or even outages need to be considered. Transformer

*The authors are equally contributing and are mentioned in alphabetic
order

models are used to study the interaction between the in-
stalled transformer with the power grid. However, these
models often require detailed information about the trans-
former under investigation, which are not always available
[5]. Also the computational power required for transformer
models increases with the level of detail. Therefore, sim-
ulations with many transformer models are time and com-
putational power consuming.
In this work we describe a new approach to set up an elec-
tromagnetic model of a power transformer, which also re-
quires low computational power and time. The approach
uses measurements and basic information about the trans-
former. The model is based on the duality transforma-
tion [6] and uses the Jiles-Atherton (JA) model [8] for the
hysteresis implementation. The duality principle is used
to transform the magnetic circuit into its equivalent elec-
tric circuit, using commonly known electric components.
Thus, the magnetic field strength and magnetic flux can
be easily calculated and assessed in the simulation with
current and voltage measurements. The JA model is com-
monly used in electrical power engineering, because it re-
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quires very few measurements and can be controlled with
five parameters. The approach is tested with a 3-phase 3-
limb 2-winding 50 kVA power transformer. The current
and voltage wave forms of the simulation and measure-
ment are in good accordance and don’t require high com-
putational power. Therefore, multiple transformers can be
used simultaneously in a power grid simulation to study the
transformer interaction with the rest of the grid.
This modelling approach does not yield the simulation of
heating or mechanical stress on the transformer, neither
does it simulate transient behaviour in terms of frequencies
above 1 kHz.

2 Fundamentals

2.1 Duality Principle
It was shown in [6] that the topological principle of dual-
ity can be applied to transformers. With this method, the
topological correct magnetic circuit of a transformer can be
converted into an equivalent electric circuit. First, a mag-
netic circuit with all the major flux paths can be drawn.
Then, the nodes/loops of the magnetic circuit are converted
into loops/nodes of the equivalent electric circuit. The re-
luctances are converted into inductances, the magnetomo-
tive sources turn into current sources. The general princi-
ple can only be applied to transformers where the windings
have an equal amount of turns. The current sources can be
replaced by ideal transformers in order to overcome this
limitation. Another limitation is that duality is only pos-
sible for planar networks. This means that in the case of
a transformer a maximum amount of three coil pairs can
be modelled if all leakage flux paths are included. Fig. 1
shows the resulting equivalent electric network of the 3-
phase 3-limb 2-winding core-type transformer. It includes
the hysteretic elements in the limbs and yokes of the core.
Resistors were added in parallel to the JA-elements in or-
der to model the dynamic core losses. A more accurate
approach is the inclusion of a rate dependant dynamic hys-
teresis model [7]. The inductances L0 represent the zero
sequence flux path. The inductances LLC and LHL repre-
sent the stray flux path between core and low voltage wind-
ing and the low and high voltage winding respectively. The
winding resistances were added to the terminals of the ideal
transformers. The derived circuit is only valid for the in-
vestigated core topology.

2.2 Jiles-Atherton Model
The JA model is developed on the physical effect of do-
main wall motion under the influence of an applied mag-
netic field [8]. Although the JA model attempts to de-
scribe the physical behaviour of the materials, it shows
non-physical behaviour [9]. Nevertheless, the JA model
is used because is accurately calculates the electrically be-
haviour at the transformer terminals. the In this paper, the
JA model is used in differential form, described in Eq. 11.
The physical link of the parameters in Eq. 11 are presented
in Tab. 1 and need to be determined iterative with the use
of measurements.

Figure 1 3-phase 3-leg transformer duality principle
equivalent circuit

Parameter Physical link
α domain wall interaction
a Man shape
k hysteresis losses
c reversibility coefficient
Msat saturation magnetization
δ direction of magnetizing field ±1

Table 1 JA parameters and physical link

The implementation of the hysteresis elements in MAT-
LAB/Simulink are presented in Fig. 2. The voltage across
the hysteresis element is measured and integrated, giving
the voltage-seconds across the element. With the geomet-
ric parameters of the transformer core, the magnetic flux
density B is derived. The JA model itself uses Eq. 2 to 13 in
the presented order to calculate the output as magnetic field
strength H. In the last step the equivalent current is calcu-
lated from the H field using the geometric transformer data.
This current is used to control a current source at the sec-
ond terminal of the hysteresis block. The time delay block
is used to increase the model stability. Further information
on the time delay are given in Sec. 4.

Figure 2 Block diagram of JA implementation in MAT-
LAB/Simulink
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3 Modelling Approach and Applica-
tion

The presented modelling approach in this work requires the
following parameters:

• core cross-section area

• magnetic path length of limb and yoke

• number of turns on high- and low-voltage winding

• winding resistance

• winding location relative to the core

• stray impedance

• zero-sequence impedance

• vector group

• transformer design (shell or core type; effect flux
paths)

This data can be provided by the transformer manufacturer
or be partly self-measured. The data for the transformer
under test is listed in Tab. 5 and Tab. 4.

3.1 Standard measurements
For the following section, the parameters refer to the
YNyn0 transformer, as presented in Fig. 3. All measure-
ments were carried out with a power amplifier. This power
amplifier is able to supply a near perfect sinusoidal voltage
with constant amplitude.

switch box low
voltage windings

W

V

U

N

Figure 3 Laboratory setup with transformer under test

For the transformer model the zero-sequence impedance
z0, the winding resistance and the stray impedance are
measured with the standard tests, according to [10]. The
measured parameters are listed in Tab. 2. The transformer
name plate data can be found in Tab. 4.

Z0* RHV RLV X1,2σ
Ω/phase Ω mΩ mΩ
2.3 323 32 231

Table 2 Measured transformer parameters, according
to [10] with a peak current of 101.8 A, a peak voltage of
78 V in YNyn vector group, with the low voltage wind-
ings connected in parallel and the high voltage terminals
in open circuit configuration

3.2 1-phase no load test
The measured power and phase currents from a regular
three-phase no-load test do not represent the currents re-
quired to produce the magnetomotive force by the actual
core sections in the investigated YNyn0 transformer. Each
phase current depends not only on the core section the
winding is on, but on the other core sections as well [11].
In order to measure the true magnetic properties of the core
material, a 1-phase measurement setup shown in Fig. 4 was
chosen. That way the magnetic coupling that would occur
at a three-phase test can be prevented. In an ideal trans-
former, the fluxes in the middle limb would cancel each
other out, leading to the main flux only appearing in the
yokes and outer limbs. The measurement was executed at
a frequency of 10 Hz in order to minimize dynamic effects.
Another benefit of measuring at lower frequencies is the
lower voltage amplitude required to reach the same flux
amplitude, making the measurement possible even with
mobile measuring/source devices.

Figure 4 1-phase no-load measurement setup

3.3 JA-Parameter fit and results
The voltage drop across the windings is subtracted from
measured voltage. The resulting voltage is integrated
to obtain the magnetic flux. The setup shown in Fig. 4
was recreated in the simulation model and was used to
fit the simulated characteristic to the measured one. The
Jiles-Atherton parameters were roughly fitted by hand.
This led to the parameters shown in Tab. 3. Fig. 5 shows
the resulting flux-current characteristics.

In order to verify the parameters, a 3-phase no-load test at
50 Hz and nominal voltage was simulated and compared to
the measurement. The fitted parameters in Tab. 3 were used
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Ms a c α k
1.75·106 100 0.15 0.16·10-3 15

Table 3 JA-parameters

for every core element in the simulation. The dynamic hys-
teresis losses were fitted by means of a resistor in parallel
to the hysteretic element. This resistor was adapted to fit
the simulated 50 Hz no-load test to the measured one. The
resulting phase currents are shown in Fig. 6. The simulated
currents in phases U and W are in good accordance. The
amplitude of the simulated current in phase V is smaller
than the measured current. This was corrected by adjusting
the JA-parameters for the middle limb separately. The satu-
ration magnetization Msat for the middle limb was lowered
to 1.65 · 106. The resulting currents are shown in Fig. 7.
In the case of a short circuit test, the behaviour depends
mostly on the stray flux path. This behaviour can simply
be modelled with the linear stray inductance L12. The sim-
ulation shows an accurate representation in case of a simu-
lated short-circuit test.
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Figure 5 1 phase flux-current-characteristic measured
and simulated at 160 Vpeak 10 Hz

4 Discussion

1-phase no load test and dynamic losses
The comparison of the flux-current-characteristic in Fig. 5
shows a deviation of the simulation to the measurement.
The measured characteristic widens at the knee points,
which could be attributed to a dynamic loss component
[7].
In its current form, the model uses the traditional method
of resistors in parallel to the Jiles-Atherton elements to
model the dynamic losses. This method leads to inaccura-
cies when the voltage exceeds its nominal value. A more
generally valid method is the inclusion of a rate-dependant
dynamic hysteresis model [7].

Correction of phase V
The model assumes a perfect and joint-less core. It can
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Figure 6 No load phase currents measured (solid) and
simulated (dashed) at 50 Hz using identical parameters for
all sections
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Figure 7 No load phase currents measured (solid) and
simulated (dashed) at 50 Hz using adjusted parameters for
phase V

be necessary to adjust the parameters for core sections in
order to factor in those imperfections. The low simulated
current in phase V can be corrected by adjusting the Jiles-
Atherton parameters for the middle limb. Since the general
shape of the simulated current fits the measured one, it was
sufficient to decrease the saturation magnetization Msat.
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The correction had no significant influence on the other
phase currents as seen in Fig. 7.

Non-sinusoidal excitation and DC offset flux
The model accuracy will be determined for non-sinusoidal
excitation and DC transformer neutral point currents in
further measurement and simulation comparisons. Non-
sinusoidal excitation and DC transformer neutral point
currents can be present in technical applications, such as
in the power transmission grid [3]. The measurements will
be carried out with a transformer back-to-back setup and a
power amplifier. In [12] a decreasing accuracy of the JA
model is measured, if additional harmonics are present.
The measurements from [12] are done with a small scale
single phase test bench. Therefore, large scale tests with
power transformers should be carried out, to estimate the
simulation-model accuracy in a technical application scale.

Simulation stability
The transfer from Eq. 1 is used to introduce a time delay
to increase the simulation stability. Decreasing b shifts the
-3 dB cut-off frequency and the phase reduction to a higher
frequency. Thus the time delay is decreased with decreas-
ing parameter b. For the shown simulations b = 5 · 10−5

was used. The corresponding -3 dB cut-off frequency is at
3.18 kHz and thus does not affect the stationary frequency
spectrum of the simulation.

1
bs+1

(1)

The simulation stability during the energizing of the trans-
former can be further increased with a voltage ramp.

5 Conclusion

In conclusion, a measurement based model approach for
transformer modelling is proposed. The model approach
includes the hysteresis effect of the core material. The
comparison of the measurements and simulation using the
example of a 3-limb 3-phase 2-winding 50 kVA power
transformer show a very good agreement. Therefore, the
approach can be used especially for power transformer
where no detailed information are available. The required
data for the model can easily be measured, even in the
field/substation. The combination of easy measurements,
duality principle based model and the fast computation
time can be a valuable tool for industry and research to
study transformer behaviour and power grid interactions.
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Appendix

Zref U1 U2 S
kΩ kV kV kVA
15.7 28 0.4 50

Table 4 Name plate of transformer under test

Tab. 5 lists the geometric data of the transformer under test.
The dimensions were measured during the modification of
the low voltage windings. Acore is the uniform core cross-
section area of the yoke and limb. N1 and N2 are the num-
ber of turns of the high-voltage and low- voltage winding,
respectively. The yoke length lyoke and limb length llimb are
the middle iron path of the yoke and limb.

Acore N1 N2 lyoke llimb
mm² mm mm
6001 7730 102 237 440

Table 5 Geometric data of transformer

The original Jiles-Atherton model uses the magnetic
field H as an input to calculate the magnetization M. In
this model an inverse Jiles-Atherton model was used,
with the magnetic flux density B as an input and the
magnetization M as an output. The hysteretic elements use
a calculation based on [13]. This method can however lead
to unphysical solutions at the loop tips [14]. To overcome
this behaviour the parameter δ M calculated in Eq. 9 was
added to Eq. 10. This parameter is based on [15] and was
adapted to fit the inverese Jiles-Atherton model.

Eq. 2 to 13 define the calculation in the hysteretic element,
presented in fig. 2, according to [13].

H(t) =
B(t)
µ0

−M(t) (2)

∆B = B(t +∆t)−B(t) (3)

M(t) =
B(t)
µ0

−H(t) (4)

He(t) = H(t)+αM(t) (5)

Man(t) = Ms

[
coth

He(t)
a

− a
He(t)

]
(6)

dMan

dHe
=

Ms

a

[
1− coth2 He(t)

a
+

(
a

He(t)

)2
]

(7)

Mirr(t) =
M(t)− cMan(t)

1− c
(8)

δ M =





0 : ∆B < 0 and Man(t)−M(t)> 0
0 : ∆B > 0 and Man(t)−M(t)< 0
1 : otherwise

(9)

dMirr

dBe
= δ M

Man(t)−Mirr(t)
µ0kδ

(10)

dM
dB

=
(1− c) dMirr

dBe
+ c

µ0
dMan
dHe

1+µ0(1−α)(1− c) dMirr
dBe

+ c(1−α) dMan
dHe

(11)

M(t +∆t) = M(t)+
dM
dB

∆B (12)

H(t +∆t) =
B(t +∆t)

µ0
−M(t +∆t) (13)
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