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Abstract 

Machine learning is already being used in various areas and will open many other opportunities in the 

future to optimize grid systems and operations. This master’s thesis investigates how machine learning 

can be used in network protection by looking at two examples.  

On the one hand, it is examined whether it is possible to use machine learning to classify different types 

of short circuits and earth faults. Since earth fault locating methods currently used in compensated 

medium voltage networks only detect the earth-faulted branch in a substation but do not allow the earth 

fault to be localized, problems in troubleshooting and isolation errors can occur due to higher voltage 

stresses. On the other hand, attempts are made to localize single-pole earth faults in medium voltage 

networks via machine learning. 

The present work deals with the machine learning algorithm of neural networks. In order to generate 

data for the training and testing of neural networks, short circuits and earth faults are simulated in various 

medium voltage networks in the DIgSILENT PowerFactory software. 

The results show that neural networks are well suited for fault classifications. Regarding the earth fault 

locating task, the outcomes indicate that neural networks can be a useful tool to locally limit earth faults. 

A combination of classical earth fault-locating methods with earth fault-locating neural networks can 

increase the accuracy and reliability of both methods. 
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Kurzfassung 

Machine Learning wird bereits in unterschiedlichen Bereichen angewandt und zukünftig viele weitere 

Chancen eröffnen, um Netzsysteme und den Betrieb von Netzen zu optimieren. Wie Machine Learning 

im Bereich des Netzschutzes angewandt werden kann, wird in dieser Masterarbeit anhand von zwei 

Beispielen erläutert.  

Zum einen wird untersucht, ob es möglich ist, mit Hilfe von Machine Learning verschiedene Arten von 

Kurzschluss- und Erdschlussfehlern zu klassifizieren. Da derzeit eingesetzte 

Erdschlussortungsverfahren in kompensierten Mittelspannungsnetzen nur den erdschlussbehafteten 

Abgang im Umspannwerk erfassen, jedoch keine örtliche Eingrenzung des Erdschlusses ermöglichen, 

kann es infolge zu Problemen in der Fehlersuche und, aufgrund höherer Spannungsbeanspruchungen, 

zu Isolationsfehlern kommen. Aus diesem Grund wird mit Hilfe von Machine Learning in 

Mittelspannungsnetzen einpolige Erdschlussfehler örtlich einzugrenzen.  

Die vorliegende Arbeit beschäftigt sich mit dem Machine Learning Algorithmus der neuronalen Netze. 

Um Daten für das Trainieren und Testen von neuronalen Netzen zu generieren, wurden Kurzschluss- 

und Erdschlussfehler in verschiedene Mittelspannungsnetze in der Software DIgSILENT PowerFactory 

simuliert. 

Aus den Ergebnissen lässt sich schließen, dass neuronale Netze zu Fehlerklassifikationen geeignet 

sind. Hinsichtlich der Erdschlussortung zeigt sich, dass neuronale Netze ein nützliches Werkzeug sein 

können, um Erdschlüsse lokal zu begrenzen. Eine Kombination von klassischen 

Erdschlussortungsverfahren und erdschlussortenten neuronalen Netzen kann die Genauigkeit und 

Zuverlässigkeit beider Methoden erhöhen. 
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1 Introduction  

Applications in the field of artificial neural networks, commonly known as artificial intelligence, are rapidly 

increasing. In the future, artificial intelligence will significantly increase the possibilities in the field of 

electrical engineering. Optimizing efficiency in the energy sector and keeping grid systems stable are 

just two prospects out of an endless number of potential applications. These opportunities of neural 

networks can be applied in the field of network protection. 

1.1 Motivation 

Almost all medium voltage networks in Austria and Germany are operated as compensated networks. 

The detection and localization of earth faults in compensated networks is a complex task. Currently, 

measuring devices cannot precisely locate the positions of earth faults; rather, the faulty branch as a 

whole is detected. In compensated grids, earth fault currents are low, and a persisting earth fault allows 

the grid to continue operating. Finding such earth faults along branches with distances of up to 20 km 

can require several hours of work. However, the longer an earth fault remains in a compensated network, 

the higher the isolation stress in the healthy feeders. Therefore, there is a lot of interest in more exact 

earth fault-locating systems.  

In the field of computer vision, machine learning has made massive steps forward in the last recent 

years. Machine learning algorithms can discover patterns in large amounts of data where humans can 

no longer keep up with. It is possible to extract information from data and then analyze and manipulate 

this information in different ways. By doing so, machine learning could open new approaches in the field 

of network protection, for example, by classifying faults and narrowing earth faults in medium voltage 

networks. 

1.2 Scope of the Work 

The aim of this master’s thesis is to investigate possible machine learning applications in the field of 

network protection. It starts by providing an overview of the theoretical basis. This is followed by an 

introduction to commonly used earth fault-detecting methods. 

First, this thesis examines whether neural networks are able to classify different kinds of faults correctly. 

Various faults in an exemplary medium voltage network were simulated with the use of the software 

DIgSILENT PowerFactory. The generated and automatically labeled data is then used to train and 

further test a neural network for fault classification.  

Second, it was investigated whether neural networks can be a useful tool in the earth-fault-locating issue 

by narrowing the earth-faulted section along a branch of a medium voltage cable network. 

In this approach, single-pole earth faults were simulated along the cables while using different exemplary 

medium voltage cable networks. The generated and labeled data was then used to train and evaluate 

neural networks for narrowing earth faults.  
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In the end, it was examined how such an earth-fault-locating neural network can be implemented in 

operating systems. 

1.3 Research Questions 

1. Can neural networks be applied in the area of network protection? 

2. Can neural networks be used to distinguish faults in medium voltage networks? 

3. Can neural networks be a useful tool to narrow earth fault positions in medium voltage 

networks? 

4. Which data is needed to train and apply such neural networks successfully? 

5. Which aspects of medium voltage network topologies influence the accuracy of neural 

networks? 

6. How can an earth-fault-locating neural network be implemented in operating systems? 
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2 Short Circuits and Earth Faults 

Symmetric and asymmetric faults in power grids are caused by isolation breaks of the dielectric or by 

line breaks. If the isolation between the conductors of a three-phase system fails due to aging, 

operational or atmospheric overvoltage, an arc occurs at the fault location. Which practically short-

circuits the consumer impedances. Possible faults in power grids are defined as in Figure 2-1. [1] [2] 

 

Figure 2-1, Definition of faults in power grids [1] 

A short circuit is a resistance-free or low resistance connection between one or more active 

components with nominal voltage. [1] 

An earth fault is a resistance-free or low resistance connection between live parts and earth if the 

neutral treatment is insulated or resonant grounded. [1] 

A line break occurs if the line disconnects through breaks in lines, cables, transformers, or dysfunctional 

circuit breakers. [1] 

2.1 Classification of Faults 

Short circuits can reach ten times the nominal current in a system. Thus, short circuits account for the 

most dangerous faults in electric power grids. Basically, short circuits and earth faults are distinguished 

into five categories, as described in [3]:  

 

Figure 2-2, Different kinds of short circuits and earth faults. [4][3] 
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a) 3-phase short circuit 

A 3-phase short circuit occurs between all three conductors. This kind of short circuit puts the most 

significant strain on a network and on switching devices. A 3-phase short circuit is the last stage of a 

developing fault. A developing fault often starts with a single-pole earth fault. Through arc extension and 

the increase in voltage in the healthy phases, a single-pole earth fault develops into a 3-phase short 

circuit. In a 3-phase short circuit, all currents have the same magnitude. The voltages decrease 

symmetrically in all phases, from the transformer to the fault location [4].  

b) Double-phase short circuit without ground 

A double-phase short circuit occurs between two conductors. In both affected phases, a short-circuit 

current flows. This kind of short circuit is very rare and sometimes appears when two oscillating 

overhead lines touch each other [4]. 

c) Double-phase short circuit with ground 

A double-phase short circuit occurs between two conductors and the ground. In the case of a double-

phase short circuit with ground, only the voltages in the phases of the short circuit decrease [4].  

d) Single-pole earth fault 

An earth fault can only appear in a three-phase power system. In case of an earth fault, one conductor 

has contact with ground or the neutral point. The equalizing current of the conductor to earth increases 

the earth potential at the fault location. It lowers the potential of the faulty conductor. By connecting the 

conductors in the three-phase network, the total voltage of the other two healthy conductors is increased 

by the amount. This can lead to voltage flashovers on insufficiently stress-resistant components. [4] 

e) Double-phase short circuit with ground and separated fault points 

The typical consequence of insufficient isolation after a single-pole earth fault. A single-pole earth fault 

becomes a double earth fault due to the excessive voltage stress in networks with an isolated or a 

resonant neutral point treatment [5].  

2.2 Neutral Point Treatment and Protection 

The neutral point treatment of transformers in a power grid has a significant influence on how a network 

is responding to earth faults, in particular with the common single-pole earth fault in medium voltage 

networks. The neutral point treatment of power grids is distinguished in:  

- Networks with an insulated neutral  

- Networks with a resonant grounded neutral 

- Networks with a low impedance neutral point [1] 

Neutral treatments have an impact on the following quantities: 

- The magnitude of the earth fault current (single-pole or double-pole) 
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- Step and touch voltage 

- Voltage stress of the healthy feeders in case of failures 

- The voltage stress on the first extinguishing switch pole in a three-pole switch-off 

- The necessity to switch off defective equipment to avoid supply interruptions [1] 

The neutral point treatment is defined as a galvanically connected network area. Network areas are 

limited by a transformer with galvanic isolation and/or through open circuit breakers. Within a network, 

areas with mixed forms of low impedance and compensated neutral point treatments cannot be used 

[1]. 

Table 2-1 shows the distribution of different neutral point treatments in different voltage areas in 

Germany, as in [1]. 

Voltage Neutral point treatment 

  
Insulated 
neutral 

Resonant 
grounded 

neutral  

Solidly of 
low 

impedance 
grounded 

neutral 

10 kV 14,30% 72,60% 13,10% 

20 kV 0% 100% 0% 

110 kV 0% 91,10% 8,90% 

220 kV 0% 0% 100% 

220 kV 0% 0% 100% 

380 kV 0% 0% 100% 

Table 2-1, Type of neutral point treatment in Germany [1] 

2.2.1 Insulated Neutral Point 

Medium voltage networks with low expansion and a low capacitive earth fault current 𝐼𝐶𝐸  can be operated 

with an insulated neutral point. An arc in transmission line networks will be self-extinguishing if the 

capacitive earth fault current does not overrun a certain amount of amps. [3] 

 

Figure 2-3. Single-pole earth fault in a network with insulated neutral [3] 

The capacitive earth fault current in Figure 2-3 is approximated using the following equation, as in [3]: 

𝐿 𝐿 𝐿 
𝐼𝐶𝐸𝐶𝐸 𝐶𝐸 𝐶𝐸
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𝐼𝐶𝐸 =  𝐼0 = √ 𝑈𝑛|𝑍0| = √ 𝜔𝐶𝐸𝑈𝑛 2-1 

 
In the case of single-pole earth fault in phase 𝐿 , the current flows over the line-to-ground capacitance 

of the phases 𝐿  and 𝐿  to the earth fault position. The current over the line-to-ground capacitance of 𝐿  discharges to zero. [1] 

The main advantage of the insulated treatment of the transformers is that the line-to-ground capacitance 

is limiting the earth fault current. If the medium voltage network is not too extensive, meaning the line-

to-ground capacitance is small enough, the current will be below the tripping limit of the protection 

system. [1]  

The disadvantage of an insulated neutral point treatment is a voltage increase by the factor √  of the 

phases, which are not affected by the fault. This can, especially with previously damaged equipment, 

lead to another earth fault, so that the standing earth fault changes into a double earth short circuit. [1] 

2.2.2 Resonant Grounded Neutral (Compensated Network) 

The more extensive a network is, the larger the capacitive earth fault current is. Through an arc-

suppression coil (ASC), also called a Petersen coil, the earth fault current is limited. In compensated 

networks, one or more neutral points of transformers are grounded with an arc-suppression coil. The 

capacitive current over the line-to-ground capacities of the power grid is superimposed with the inductive 

current from the arc-suppression coil. The earth fault current is lower than in an insulated network. [1] 

At a matching of the inductance of the ASC to the capacitance 𝐶𝐸 = 𝐶0 of the power grid, in case of an 

earth fault, only the residual earth fault current 𝐼𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 flows at the fault location. The residual earth fault 

current consists of an active component (residual wattage current) and the harmonic components [3]. 

The deletion limit for the residual current is 60 A for networks ≤20 kV and increases for 110 kV networks 

to 130 A. [6] 

 

Figure 2-4, Single-pole earth fault in a compensated network [3] 

As in insulated networks, the tensions between the healthy phases and the earth increase by a factor 

of √ , during an earth fault. [6] 

When the compensation condition (resonance condition) is met, the amount of inductive current via the 

ARC is the same as that capacitive electricity over the earth capacities of the network area. The 

inductivity of the coil is determined through the following equation [1]: 

𝐿 𝐿 𝐿 
𝐼𝐶𝐸𝐶𝐸 𝐶𝐸 𝐶𝐸𝑋 
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𝑋 =   𝜔𝐶𝐸 2-2 

The main advantage of the compensated network is the low earth fault current. Even in extensive 

networks with a high earth capacity, the protection system will not trigger in case of an earth fault, and 

it is, therefore, possible to continue the power supply. Because of the low earth fault current, arcs are 

often self-extinguishing, and the grid can still be operated during a persisting earth fault. [1] 

The major disadvantage is that the healthy phases experience a phase-earth voltage increase by the 

factor √ . The increased voltage puts additional stress on the isolation and can lead to further, 

subsequent earth faults in the healthy phases.  It is recommended that an earth fault should not persist 

for more than two hours to keep the likelihood of a double earth fault as low as possible. [1] 

2.2.3 Low Impedance Neutral Point 

In networks with a low impedance neutral point, one or more neutral points of transformers are grounded 

via current limiting impedance 𝑅𝐸. In this case, every earth fault occurs as a short circuit with 

corresponding high short circuits currents. Each earth fault has to be switched off through the selective 

protective devices. The required maintenance level of the power supply is lower than in the previous 

neutral point systems. [3][6] 

Low impedance networks are split into two types:  

- ones in which the impedance of the neutral point is zero (solidly grounded) and  

- ones in which the neutral point is grounded with an impedance greater than zero (low-

impedance grounded neutral). [1] 

 

Figure 2-5, Low impedance grounded network [3] 

The advantage of a low-impedance neutral system is that in the case of a single-pole earth fault, the 

voltages in the healthy phases experience a lower increase than in networks with insulated or resonant 

grounded neutral points.  

𝐼𝐶𝐸 = 𝑈𝑛√ 𝑅𝐸 2-3 

The high short-circuit currents, which lead to a voltage drop at the earth resistance, are problematic. A 

rapid shutdown (≤0.5 s) means that protection and earthing conditions can be maintained despite the 

high fault currents. 

𝐿 𝐿 𝐿 
𝐼𝐶𝐸𝐶𝐸 𝐶𝐸 𝐶𝐸𝑅𝐸
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2.3 Earth Faults in Compensated Networks 

Earth faults are single-pole faults that appear in three-phase power systems. The level of the earth fault 

current depends on the neutral treatment and on the parameters of the grid. These currents are 

particularly smaller than short-circuit currents and are commonly under nominal currents. 

In case of an earth fault in a compensated network, an additional fault circuit opens over the arc-

suppression coil, to the line-to-ground capacities, as shown in Figure 2-6. Hereby, the arc-suppression 

coil is dimensioned in a way that the capacitive earth fault current 𝐼𝐶𝐸  is more or less compensated 

through the inductive current 𝐼𝐿 from the arc-suppression coil at the fault location. The remaining earth 

fault current is called residual earth fault current. The residual earth fault current consists only of an 

uncompensable reactive current component, a compensable active current component, and some 

harmonic components. Through this approach, it is possible to maintain the power supply during an 

earth fault. [7][8] 

 

Figure 2-6, Earth fault in a compensated network [7] 

The level of the residual earth fault results from the detuning of the arc-suppression coil. The detuning 

of the arc-suppression is defined as follows and describes the relationship between the capacitive earth 

fault current  𝐼𝐶𝐸 and the inductive current 𝐼𝐿  caused by the arc-suppression coil. [9] 

𝑣 = 𝐼𝐿 −  𝐼𝐶𝐸 𝐼𝐶𝐸  2-4 

 
As the actual inductance 𝐿  of the arc-suppression coil and the ideal inductance 𝐿𝐸,𝑖𝑑𝑒𝑎𝑙 for full 

compensation. The capacitive earth fault current 𝐼𝐶𝐸  and the inductive current 𝐼𝐿 are calculated as 

follows, as in [8]: 𝐼𝐶𝐸 = √ ∙ 𝑈𝑛 ∙ 𝑗𝜔 ∙ 𝐶𝐸 2-5 
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𝐼𝐿 = 𝑈𝑛√ ∙ 𝑗𝜔 ∙ 𝐿  2-6 

 
The detuning indicates whether the grid is operated overcompensated or undercompensated. In case 

of a positive detuning 𝑣 > 0, the inductive current 𝐼𝐿  is higher than the capacitive earth fault current. The 

grid is said to be overcompensated. If the detuning is negative 𝑣 < 0, the grid is said to be 

undercompensated. [8] 

The damping factor 𝑑 is defined as the relation between the active power losses 𝐼𝑎𝑐𝑡 of the arc-

suppression coil and the capacitive earth fault current 𝐼𝐶𝐸 , as described in [9]. The damping factor is a 

measure for the ohmic component of the residual earth fault current. 

𝑑 = 𝐼𝑎𝑐𝑡𝐼𝐶𝐸  2-7 

 
Usually, grids are operated overcompensated. The advantage of it is that in the case of line 

disconnections, the operating point is not going into the direction of the resonance point (𝑣 = 0) because 

the line-to-ground capacities are reduced by the disconnection. If the operating point is near the 

resonance point, a higher displacement voltage occurs (Figure 2-7), which might wrongly indicate an 

earth fault. [8][9] 

 

Figure 2-7, displacement voltage and residual earth fault current over detuning, [10] 

2.4 Protection Philosophy 

Protection technology is an essential element in the management of electrical power grids. It ensures 

the continuity of operations and the stability of the network by safely, quickly, and selectively switching 

off faulty network elements. Those faulty elements are switched on again as soon as possible once the 
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fault is rectified. A second requirement for the protection technology field is to avoid damage to humans, 

animals, and equipment through electrical touch voltages and arcs [6]. 

 

Figure 2-8, Requirements for protection devices in a protection system [4]. 

A modern protection system includes all the requirements shown in Figure 2-8. The protection devises 

from a protection system, which includes all components for measuring value processing, selective 

turnoffs, and all required information. A protection system has to have the highest availability. The 

availability is increased via the redundancy of equipment in the protection system [6].  

A protection device must be able to reliably detect faults and ensure that faulty parts are switched off. 

To ensure security, the protection of a network is always carried out with redundant functions. This 

means that if a protective device fails, the protective function is taken over by upstream switching 

devices or fault detection devices working in parallel. Accordingly, a distinction is made between the 

main protection and reserve protection [11].  

A protection system should only switch off the faulty area or the faulty components. This selectivity is 

achieved by the appropriate adaption of the tripping behavior of protection devices connected in a series. 

The main protection for short circuits needs to trip as fast as possible to avoid mechanical or thermal 

damage. A short error clarification time is needed. The total error clarification time consists of the 

detection period, the generation of the tripping order for the circuit breaker, and the time for the actual 

switching operation [11]. 

2.5 Earth-Fault-Detection 

Earth-fault locating relays using classical methods, which are introduced later, refers to the identification 

of the earth-faulted branch. The whole outgoing branch is the object of protection. Classic earth-fault-

locating methods are distinguished into transient and stationary methods. Transient methods have a 

high accuracy identifying earth-faulted branches, especially in cable networks, because of low-ohmic 

         
      

     

          

           

          

               

            

        
        



Short Circuits and Earth Faults 

11 

transition impedances. Stationary methods use the displacement voltage and the zero-sequence current 

of outgoing branches to determine the earth-faulted branch. In this chapter, the following earth-fault-

locating methods are introduced. [2] 

- Transient method 

Stationary methods: 

- Wattmetric method 

- Harmonic method 

- Pulse method 

2.6 Transient Method 

The behavior of a single-pole earth fault can be described in three events. All events start at the same 

point but have a different period, as described in [12]. 

- Discharge of the earth-faulted line over the earth 

- Charge of the healthy lines over the earth 

- Stationary state of the earth fault 

For the standard transient method, the charging process is used for the detection of earth-faulted 

branches. The direction (upstream, downstream) of a fault is determined through the signs of the zero-

sequence current of a single branch, and the displacement voltage. If the displacement voltage reaches 

a certain threshold value for about 100ms, an earth fault is detected, and the signs of the displacement 

voltage are compared with the corresponding zero-sequence currents of the outgoing branches. If the 

signs differ from each other, the earth-faulted branch is found. If the signs are equal, the earth fault is 

located upstream. [12][2] 

 

 

Figure 2-9, two healthy branches during a low ohmic earth fault, [12] 
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Figure 2-10, earth-faulted branch during a low ohmic earth fault, [12] 

Figure 2-9 shows the displacement voltage and the zero-sequence currents of two healthy branches. 

The zero-sequence currents and the displacement voltage have the same sign. The threshold value for 

an earth fault was assumed at 40%. Figure 2-10 displays the earth-faulted branch, which is identified 

through different signs of the zero-sequence current and the displacement voltage. [2] 

The standard transient method is only functioning when the transition impedance on the fault’s position 

is lower than 50Ω. The following section describes the advantages and disadvantages as in [2]. 

Advantages: 

- Not sensitive to angle deviations between the zero-sequence current and the displacement 

voltage 

- The Holmgreen circuit can be applied to measure the zero-sequence current. 

 

Disadvantages: 

- Only suitable for earth faults with a transition impedance lower than 50Ω  

- Only transient events can be analyzed in this method, and the method cannot be repeated. 

- Sensitive to high circuit currents  

- Analyzing such narrow time slots can lead to an incorrect decision on direction. 

- It is difficult to determine and verify the threshold value for an earth fault. 

The transient method can be improved by the qu-algorithm. The qu-algorithm takes advantage of the 

fact that the voltages of the healthy lines increase by factors of √ . The zero-sequence voltage of the 

branches can be described as follows [2]:   

𝑢0(𝑡) =  𝑢0(𝑡0) +  𝐶𝑒𝑞𝐵 ∫𝑖0𝐵(𝜏) 𝑑𝜏𝑡
𝑡0  

2-8 
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This demonstrates that the zero-sequence voltage can only be built up when a current charges the line-

to-ground capacities. The integral of the current describes the electrical charges, and the zero-sequence 

voltage is proportional to the electrical charges, assuming 𝑢0(𝑡) = 0. [2] 

In Figure 2-11, the charge 𝑞 is plotted on the y-axis and the zero-sequence voltage on the x-axis. The 

slope of the lines of the healthy branches B and C is the inverse value of the healthy branches’ line-to-

ground capacity.  

Because of the reversed sign of the zero-sequence current of the earth-faulted branch, the model 

description is not working anymore. In compensated networks, the earth-faulted branch does not 

displace a line in the diagram, as shown in Figure 2-11. [2][12] 

 

Figure 2-11, qu-diagram of a low ohmic earth fault in branch A, [2] 

 

Through this approach, transient earth faults with a transition impedance of a few kΩ at the fault position 

can be detected. [2] 

2.7 Wattmetric Method 

In the case of an earth fault in a compensated network, the inductive current from the arc-suppression 

coil and the capacitive earth fault current has almost the same amount. The 50 Hz residual current 

consists of a capacitive component and an ohmic component, the so-called active residual current. In 

the wattmetric method, the amplitude and direction of the active residual current are determined. 

Through this, the earth-faulted branch can be identified. The applied cos (𝜑) circuit determines the active 

component through the measuring of the zero-sequence current and displacement voltage. The 

direction of the residual active current indicates whether the earth fault is located upstream or 

downstream. [2]   

The active residual current is very low, and the result of this method is very sensitive to angle deviations 

of the current and voltage transformers. The active residual current depends on the impedances in the 

zero-sequence network, and especially from the arc-suppression coil. The method can be improved by 
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an increase of the active residual current by connecting a resistor in parallel to the arc-suppression coil, 

as shown in Figure 2-12. [2]  

As in [2], there are several approaches to increase the active residual current: 

- A permanent increase of 5 to 10A 

- The residual active current increase of 5 to 20A during the healthy operating time to a few 

seconds after an earth fault occurs 

- Short-term increasing in the area of 300A 

- Short-term increasing in the area of 1200 to 2000A (KNOSPE). 

 

Figure 2-12, increasing of the active residual current, [2] 

If the resistor is only switched on for the short-term, the detecting devices must have directional 

indicators with reset inputs or an automatic reset after a defined time. As in [2], the advantages of the 

wattmetric method with an increased active current are: 

- Reduced requirements on the angle accuracy of the current and voltage transformer 

- It can be used for switching faulty branches. 

The disadvantages are: 

- It is not functioning in ring topologies because of phase splitting 

- Stationary earth fault is assumed 

- Technical effort because of the complex circuit for the increasing of the active residual 

current 

- Only short-term connection of the parallel resistor is possible because of the generated heat. 

- With a higher current, the step and touch voltages must be considered.  

- It is possible that with long lines, the required current at the fault position is not reached. 

- Directional indicators with reset inputs or an automatic reset after a defined time are needed. 
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2.8 Harmonic Method 

As same as the previous methods, the harmonics are used to detect earth-faulted outgoing branches of 

a substation. Through the harmonics, the compensated network can be approximated as an isolated 

network because the impedance of the arc-suppression coil is negligible compared to the very low 

impedances of the line-to-ground capacities.[2]  

 

Figure 2-13, a compensated network for the harmonics, [13] 

Harmonics occur at the earth-fault position. The sum of the harmonic currents at the affected earth-

faulted outgoing branch is equal to the total sum of the harmonic currents at all healthy branches. The 

sum current of the healthy branches is capacitive and leads the displacement voltage by 90°. The sum 

current of the affected outgoing branch is inductive and lags the displacement voltage by 90°. [2][13] 

These conditions can be used to detect an earth-faulted branch. One the one hand, the direction of the 

harmonic sum current in relation to the displacement voltage can be used. The distinction is made 

between a capacitive current (no earth fault), and an inductive current, which indicates an earth fault. 

On the other hand, all harmonic sum currents of the branches can be compared. The branch with the 

relatively highest current indicates an earth fault. [2][13] [14] 

By applying a reactive power directional relay and an upstream 250 Hz filter, earth faults can be detected 

for specific branches. In pure cable and pure overhead line networks, the harmonic method operates 

reliably. Unreliability comes up when the method is applied to mixed networks. In branches that begin 

with overhead lines in combination with following cable sections, the resonant point of the series 
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resonant circuit is overstepped very fast, which results in a current reversal at the fault position. [2][13] 

[14] 

Figure 2-14 shows the serial resonant point of the harmonic in a 20kV medium voltage overhead line 

network. The length of the overhead line is shown on the x-axis, the capacitive zero-sequence current 

on the y-axis. As long as the network is operating on the left side, the harmonic method is functioning. 

[2][13][14] 

 

Figure 2-14, resonant frequency 250 Hz, [2] 

Advantages of the harmonic method (as in [13]): 

- The compensated network can be considered as an isolated network. 

- Easy realizable and robust 

- Not sensitive to angle errors between the displacement voltage and the zero-sequence-

current 

Disadvantages of the harmonic method: 

- Stationary state of the earth fault is necessary 

- Not compatible in ring topologies 

- A healthy residual network is necessary 

- Through a series resonant circuit in mixed networks (overhead lines and cables), a more 

detailed verification of the configuration is needed. 

-  Harmonic components of the phase-to-phase voltage must be present. 

- The Holmgreen circuits need to be tuned exactly.  

2.9 Pulse Method 

The pulse method is used to determine earth-faulted branches by cyclical parallel connections of a 

capacitor to the arc-suppression coil. By this, the reactive current at the fault position changes. These 

pulses can only be measured from the clock generator to the fault position, as shown in Figure 2-15. 

The earth-faulted branch can be detected by the zero-sequence current modulation. The required 
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current change is usually in the area of 2 to 3% of the capacitive earth-fault current. In addition, the 

operation of the network must be overcompensated in order to be able to clearly record the pulses along 

the lines to the point of failure. [13]  

 

Figure 2-15, pulse method, [2] 

The pulse method functions below transition impedances of 300Ω. Five out of seven pulses must be 

detected correctly to indicate earth faults with high accuracy. During the pulse time, the zero-sequence 

network should not be changed. The first results of the pulse method can be expected after around 25 

seconds. [2] 

Figure 2-16 shows the principle of the pulse detection method. The pulses coming from the clock 

generator to the fault position are identifiable by pulse locating relays. The earth fault is located in the 

segment between the last detected pulse and the first undetected pulse. The more pulse locating relays 

that are implemented, the more precise the narrowing. [2] 

 

Figure 2-16, principle pulse detection [2]  
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If a higher amount of pulse locating relays is installed, it is essential to operate the grid overcompensated 

at least as high as the pulse currents are. Otherwise, a wrong segment would be detected because of 

the elimination of the pulse signals. [2] 

In ring topologies, the pulse method does not work. The pulse current flows from both directions to the 

position of the earth fault. If the amount of the pulse current is high enough, an earth fault is indicated 

along the whole ring, and it is not possible to distinguish between the single segments. If a fault is located 

in the middle of the ring, the pulse currents are cut in half. [2] 

As in [2], the advantages and disadvantages of the pulse method are as follows. 

Advantages: 

- Since only the current is evaluated, the pulse method is not sensitive to angle errors 

between the displacement voltage and the zero-sequence current 

- Holmgreen circuit can be applied 

- More detailed locating through the measuring of the zero-sequence current is realizable 

Disadvantages: 

- Stationary earth fault for 30 seconds is assumed 

- An overcompensated grid is assumed, which can be in conflict with other conditions, like 

the limits of the touch and step voltages 

- Detailed locating via locating pulse relays is not possible in ring topologies 

- Sensitive to harmonics in the sum current 

- Symmetrical pulsing is only suitable for low fault resistance. Unsymmetrical pulsing usually 

works for a fault resistance below 300Ω 

- Does not work for repeating and intermittent faults 

- The amount of the required overcompensation depends on the active component of the grid 

- Extinguishing power of decentralized coils has to be considered 

- It does not work for undercompensated grids. It creates a “blind section” in the line, which 

can be interpreted as fault position 

 

What all of the above-introduced methods have in common is that only the earth-faulted branch is 

detected, rather than an earth-faulted section along a branch. The pulse method is able to differ in 

sections, but only if pulse relays are installed in locale grid stations. This major disadvantage leads to 

longer troubleshooting times, which further result in a higher isolation stress for the healthy components. 

Neural networks are used to try to outweigh this disadvantage. It was investigated how neural networks 

can be applied to distinguish in earth-faulted sections along a branch by only measuring the voltages 

and currents of the earth-faulted branch in the substation.  
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3 Modelling and Simulation 

3.1 Introduction 

All neural networks were trained on before simulated data, generated through the software DIgSilent 

PowerFactory. With this approach, all data samples were already labelled automatically by DIgSilent 

PowerFactory. The labelled samples were used later to train neural networks. 

The simulations for the data generating process differ regarding the tasks. For the fault classification 

task, a reduced exemplary grid model was used to simulate different kinds of faults in order to determine 

whether a neural network can be used to classify the faults. For the earth-fault-locating task, different 

kinds of grid topologies, which differed in complexity, were simulated to investigate the limits of earth-

fault-locating neural networks. 

3.2 DIgSILENT PowerFactory 

DIgSILENT PowerFactory is a widely used power engineering software. The software was used for EMT 

(Electro-Magnetic-Transients) fault simulations in compensated medium voltage networks. DIgSILENT 

PowerFactory has the advantage that simulations can be executed, while variating grid parameters by 

an external python script. With this, simulations with a wide range of different fault possibilities could be 

completed almost automatically. 

Most of the network calculating programs use two types of dynamic simulation methods, EMT 

(electromagnetic transients) and RMS (root mean square). In EMT simulations, voltages and currents 

are displayed as instantaneous values. EMT considers very high-frequency phenomena, such as 

dynamic behaviours of passive components. It is used for simulations of electromagnetic dynamic 

balancing processes. In contrast, in RMS simulations, transients are neglected, and only the 

fundamental frequency of the root mean square values are calculated. Compared to EMT, the 

advantage of RMS simulations is in the shorter required simulation times, which allows for simulating 

complex grid systems in a short time. [15][16] Due to the fact that transient processes are also 

considered, the EMT simulation method is used for the further simulations.  

The simulation results, the measured voltages, and currents in the substation of the simulations were 

stored as CSV files (comma-separated values), including the fault position, type of fault, and all 

parameters which varied during simulations. By the storage in CSV files, the data was easily available 

for the data preparation for the neural networks. 
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Figure 3-1, simulated faults were stored as CSV files 

 

3.3 Simulation Model 

The grids were created in the software DIgSILENT PowerFactory. The simulated and generated data 

served as a data basis for the development of neural networks. The following grid parameters were 

selected for the fault classification task as well as for the earth-fault-locating task.  

Grid and transformer Unit 
Reference 

Level 

Nominal voltage kV 20 

Grid, short circuit level MVA 3000 

Transformer power MVA 40 

Transformer short circuit voltage   15% 

Table 3-1, grid parameters 

In all grids, the same cable is used. 

Cable 
Voltage 

level 
𝑹𝟏 𝑿𝟏 𝑪𝟏 𝑪𝟎 𝑹𝟎 𝑿𝟎 

 kV 
Ωkm 

Ωkm 
𝜇𝐹km 

𝜇𝐹km 
Ωkm 

Ωkm 

NA2XSY 

3x240rm 
12/20 0.1281 0.0974 0.31 0.3216 0.5125 0.3896 

Table 3-2, cable parameters [15] 

3.3.1 Sensitivity Analyses 

Sensitivity analyses are used to evaluate how sensitive a mathematical model is through minor 

modifications of input parameters. Particularly in the field of economic sciences, sensitivity analyses find 

applications in investment and project management to assess the impact of long-term variables or 

unknown costs. The analysis determines which single components are the biggest risk for a project or 

an investment over time.  

.csv

+ Failure Location

+ Type of Fault

+ Parameters of the

Network

Kabel_A-B Kabel_A-B Kabel_A-B Station A Station A Station A

Phasenstrom 
L1/Anschluss 
i in kA

Phasenstrom 
L2/Anschluss 
i in kA

Phasenstrom 
L3/Anschluss 
i in kA

Phasenspann
ung L2 in p.u.

Phasenspann
ung L3 in p.u.

Phasenspann
ung L1 in p.u.

-0,071 -0,222 0,293 0,000 0,866 -0,866

-0,062 -0,228 0,290 -0,031 0,881 -0,850

-0,052 -0,234 0,287 -0,063 0,896 -0,833

-0,043 -0,240 0,283 -0,094 0,909 -0,815

-0,033 -0,246 0,280 -0,125 0,922 -0,797

-0,024 -0,252 0,276 -0,156 0,934 -0,777

-0,014 -0,257 0,271 -0,187 0,944 -0,757

-0,005 -0,262 0,267 -0,218 0,954 -0,736

0,005 -0,267 0,262 -0,249 0,963 -0,714

0,015 -0,271 0,257 -0,279 0,971 -0,692

0,024 -0,276 0,252 -0,309 0,978 -0,669

0,034 -0,280 0,246 -0,339 0,984 -0,645

0,043 -0,283 0,240 -0,368 0,989 -0,621

0,053 -0,287 0,234 -0,397 0,993 -0,596

0,062 -0,290 0,228 -0,426 0,996 -0,571

0,072 -0,293 0,221 -0,454 0,999 -0,545

Kabel_A-B Kabel_A-B Kabel_A-B Station A Station A Station A

Phasenstrom 
L1/Anschluss 
i in kA

Phasenstrom 
L2/Anschluss 
i in kA

Phasenstrom 
L3/Anschluss 
i in kA

Phasenspann
ung L2 in p.u.

Phasenspann
ung L3 in p.u.

Phasenspann
ung L1 in p.u.

-0,071 -0,222 0,293 0,000 0,866 -0,866

-0,062 -0,228 0,290 -0,031 0,881 -0,850

-0,052 -0,234 0,287 -0,063 0,896 -0,833

-0,043 -0,240 0,283 -0,094 0,909 -0,815

-0,033 -0,246 0,280 -0,125 0,922 -0,797

-0,024 -0,252 0,276 -0,156 0,934 -0,777

-0,014 -0,257 0,271 -0,187 0,944 -0,757

-0,005 -0,262 0,267 -0,218 0,954 -0,736

0,005 -0,267 0,262 -0,249 0,963 -0,714

0,015 -0,271 0,257 -0,279 0,971 -0,692

0,024 -0,276 0,252 -0,309 0,978 -0,669

0,034 -0,280 0,246 -0,339 0,984 -0,645

0,043 -0,283 0,240 -0,368 0,989 -0,621

0,053 -0,287 0,234 -0,397 0,993 -0,596

0,062 -0,290 0,228 -0,426 0,996 -0,571

0,072 -0,293 0,221 -0,454 0,999 -0,545

Kabel_A-B Kabel_A-B Kabel_A-B Station A Station A Station A

Phasenstrom 
L1/Anschluss 
i in kA

Phasenstrom 
L2/Anschluss 
i in kA

Phasenstrom 
L3/Anschluss 
i in kA

Phasenspann
ung L2 in p.u.

Phasenspann
ung L3 in p.u.

Phasenspann
ung L1 in p.u.

-0,071 -0,222 0,293 0,000 0,866 -0,866

-0,062 -0,228 0,290 -0,031 0,881 -0,850

-0,052 -0,234 0,287 -0,063 0,896 -0,833

-0,043 -0,240 0,283 -0,094 0,909 -0,815

-0,033 -0,246 0,280 -0,125 0,922 -0,797

-0,024 -0,252 0,276 -0,156 0,934 -0,777

-0,014 -0,257 0,271 -0,187 0,944 -0,757

-0,005 -0,262 0,267 -0,218 0,954 -0,736

0,005 -0,267 0,262 -0,249 0,963 -0,714

0,015 -0,271 0,257 -0,279 0,971 -0,692

0,024 -0,276 0,252 -0,309 0,978 -0,669

0,034 -0,280 0,246 -0,339 0,984 -0,645

0,043 -0,283 0,240 -0,368 0,989 -0,621

0,053 -0,287 0,234 -0,397 0,993 -0,596

0,062 -0,290 0,228 -0,426 0,996 -0,571

0,072 -0,293 0,221 -0,454 0,999 -0,545
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The sensitivity analysis was used to estimate the influence of variables that may have an impact on the 

result of short circuits along the cable. Below, in Figure 3-2, a 3-phase short circuit at the end of Cable1 

is shown. The medium voltage cable network consists of an external grid, a transformer, two cables, 

and two loads at the end of it.  

 

Figure 3-2, Medium voltage cable network with a short circuit in Cable1 

In the following, the 3-phase short circuit was calculated and applied to a sensitivity analysis. Figure 3-3 

shows the equivalent circuit diagram of the medium voltage network, including the 3-phase short circuit 

(red arrow). 

 

Figure 3-3: Equivalent circuit diagram including a 3-phase short circuit 

In the next steps, the single impedances were calculated. The sensitivity analysis must determine a 

reference short circuit value of the whole network that serves as a benchmark for the modifying input 

variables. First, the grid impedance was determined by the nominal voltage squared multiplied by the 

voltage factor of  .  divided by the grid short-circuit level.   

𝑍 𝐺𝑟𝑖𝑑 = 𝑐 ∙  𝑈𝑁²𝑆𝐶𝐿 =   .  ∙   0 𝑘𝑉 ² 000 𝑀𝑉𝐴 =  0. 467 Ω 3-1 

 
The transformer impedance is given by the short-circuit voltage 𝑢𝑘 in percent times the nominal voltage 

squared divided by the apparent transformer power.  

ZGrid ZT
ZCable1

ZCable2

ZLoad1

ZLoad2

Measuring position 
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𝑍 𝑇𝑟 = 𝑢𝑘 ∙  𝑈𝑁²𝑆 𝑇 =  5% ∙  0 𝑘𝑉 ²40 𝑀𝑉𝐴 =  0. 5 Ω      3-2 

The impedance of the 𝐿𝑜𝑎𝑑  was determined by nominal voltage squared divided by the load power 

plus the tangent of an angle. 

𝑍 𝐿𝑜𝑎𝑑2 = 𝑈²𝑆  =  0 𝑘𝑉² 6 𝑀𝑉𝐴 =  5 Ω 3-3 

Both line impedances are given by the cable length of 6 𝑘𝑚 times the resistance and the 

inductive reactance as follows:  

𝑍 𝐶𝑎𝑏𝑙𝑒1 = 𝑍 𝐶𝑎𝑏𝑙𝑒2 =  𝑙 ∙ √𝑅′² + 𝑗 𝑋′²𝐿 = 6 𝑘𝑚 ∙ √ 0.  8 ² Ω𝑘𝑚 +  0.0974 ²𝑗 Ω𝑘𝑚  =  0.9654 Ω 
3-4 

The calculation of the 3-phase short circuit current the substitute source method was used. Since only 

the current amplitude at the short circuit location is of interest, it was only calculated with absolute values. 

In the following, the equivalent short circuit diagram with the substitute source method is shown. 

 

Figure 3-4, Equivalent short circuit diagram  

with the substitute source method 

Out of this diagram, the absolute short circuit current was calculated as follows. This value was used as 

a reference value for the sensitivity analyses. 

I′′k = c ∙ UN√ ∙  Z total =  . ∙  0 kV√ ∙   .5  9 Ω = 5.05 5 kA 3-5 

Through the sensitivity analyses, the single input variables were varied between 10% and 20% 

depending on their possible range. The following Table 3-3 shows the reference level and the range of 

variation of each input variable.  

Variable Unit 
Reference 

Level 
Range of 
Variation 

Nominal voltage kV 20   

Grid, short circuit level MVA 3000   

Transformer power MVA 40   

Transformer short circuit voltage  V 15%   

Power Load2 MVA 16 ± 20% 

Power Factor Load2   0.9 ind. ± 10% 

Length Cable1 km 6 ± 20% 

Impedance Cabel1 
Ωkm 

0.1281 Ω 

+0.09739 𝑗Ω   

ZGrid ZT
ZCable1

ZCable2

ZLoad2

c  UN 

https://dict.leo.org/englisch-deutsch/inductive
https://dict.leo.org/englisch-deutsch/reactance
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Length Cable2 km 6 ± 20% 

Impedance Cabel2 
Ωkm 

0.1281 Ω 

+0.09739 𝑗Ω   

 

 

Figure 3-5 shows the absolute result in percent depending on the single variation of each input variable. 

The slope indicates the change. The higher the slope, the more significant is the effect on the result. As 

shown, the length of 𝐶𝑎𝑏𝑙𝑒  has by far the biggest impact on the result. The influence of 𝐶𝑎𝑏𝑙𝑒  stays 

almost the same throughout the entire analysis, whereas the power factor and the power of 𝐿𝑜𝑎𝑑  have 

a bigger impact but still not as much as the cable length. 

 

Figure 3-5: Outcome of the Sensitivity Analyses 

As mentioned before, the indicators of the sensitivity analysis are the single slopes from the input 

variables in the diagram. The greater the slope of a single variable, the higher is the effect on the result 

and vice versa. For the impact, it does not matter whether the slopes are positive or negative.  

As the diagram above shows, the longer the cable length of 𝐶𝑎𝑏𝑙𝑒  and, therefore, the distance from 

the feeding busbar, the higher is the influence of the short circuit current. In contrast, the short circuit 

current of 𝐿𝑜𝑎𝑑  and its power factor has a very flat slope. Thus, the impacts on the result are low.  

Based on the outcome of the sensitivity analyses, the main focus in the data generation via the 

simulation will rely on the cable length and on the short circuit position along the affected cables. In sum, 

this sensitivity analysis allowed assessing the effects and sources of uncertainties in the interest of 

generating suitable data. 
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Variation of the input variables

Sensitivity Analysis

Cable Length ZL1

Power Load2

Power Factor Load2

Cable Length ZL2

Table 3-3: Sensitivity Analyses, Reference Level, Variables and Range of Variation 



Modelling and Simulation 

24 

3.3.2 Reduced Model for Fault Classification 

For the fault classification task, the topology of the grid model applied in the sensitivity analysis was 

used. The exemplary 20kV reduced compensated medium voltage grid is shown in Figure 5-1. It was 

used for data generation of different kinds of faults. Along cable1, faults were simulated. The generated 

data was later used to train, validate, and test a neural network to classify these faults. The results of 

the neural network are shown in chapter 0. 

Simulated Faults: 

- 3-phase short circuit 

- 2-phase short circuit L1–L2 

- 2-phase short circuit L2–L3 

- 2-phase short circuit L1–L3 

- Earth fault L1 

- Earth fault L2 

- Earth fault L3 

 

Figure 3-6, a grid for fault simulation 

Based on the results of the sensitivity analysis, the grid parameters were varied during the simulation, 

for each simulated fault. The focus in the simulations was on the cable length and the fault location 

along the affected cable. 

 Variated Steps 

Length of cable1 From 0.5 to 6 km 0.5 km 

Fault position From 10% to 100% 10% 

Load1 From 2 to 4 MW 2 MW 

Load2 From 1 to 5 MW 4 MW 

Table 3-4, varied parameter during simulation 

The length of cable1 was varied from 0.5 to 6 km in 0.5 km steps. The fault position relative to the length 

of cable1 ranged from 10 to 100% in 10% steps. The power of load1 of the faulty branch varied from 2 

Measuring position 
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to 4 MW in 2 MW steps. The power of the load2 of the healthy residual grid varied between 1 and 5 MW 

in 4 MW steps. 

The currents and voltages were measured in the substation at the faulty outgoing branch, as is usual in 

operating systems. With this, the currents and voltage curves of the simulation were saved and stored 

as CSV files, including the type of fault, the failure location, and all the parameters, which changed 

during the simulation. Each type of fault was simulated on every possible variation of the parameters. 

Thus, the fault simulation ran through all possible variations and resulted in 3,360 data samples. The 

data served as a database for the machine learning algorithm, especially for neural networks. The 

results are presented in chapter 0. 

3.3.3 Verification of the Simulation Model for Earth Fault Simulation 

Extended grid models were used in the earth-fault-locating task to examine the strength and weakness 

of earth-fault-locating neural networks. First, an exemplary reduced grid model was applied to verify 

DIgSILENT PowerFactory’s results, shown in Figure 3-7. The same grid topology was later used to 

generate data.  For the verification, the detuning 𝑣 of the inductance current of the arc-suppression coil 

and the capacitive earth fault current is zero. Thus, the grid runs fully compensated. The grid and 

transformer parameters were selected, as shown in Table 3-5. Each of the seven outgoing branches 

consists of a 10km medium voltage cable. The cable parameters are shown in Table 3-6.  

 

Grid and transformer Unit 
Reference 

Level 

Nominal voltage kV 20 

Grid, short circuit level MVA 3000 

Transformer power MVA 40 

Transformer short circuit voltage   15% 

Detuning 𝑣 of the grid  0% 

Total cable length km 50 

Table 3-5, grid parameters 

 

Cable 
Voltage 

level 
𝑹𝟏 𝑿𝟏 𝑪𝟏 𝑪𝟎 𝑹𝟎 𝑿𝟎 

 kV 
Ωkm 

Ωkm 
𝜇𝐹km 

𝜇𝐹km 
Ωkm 

Ωkm 

NA2XSY 

3x240rm 
12/20 0.1281 0.0974 0.31 0.3216 0.5125 0.3896 

Table 3-6, cable parameters [15] 
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Figure 3-7, an exemplary reduced grid for earth fault simulation 

First, the capacitive earth fault current 𝐼𝐶𝐸  was calculated, as well as the needed reactive impedance 𝑋𝑃 

and the current 𝐼𝑃 of the arc-suppression coil. Next, the value of the reactive impedance 𝑋𝑃 was added 

to the DIgSILENT PowerFactory simulation to compare the results of the simulation to the results 

calculated by hand.  

The total earth capacitance of the network is the product of the line-to-ground capacitance per km and 

the total cable lengths in the network. 𝐶𝐸 = 𝐶0 ∙ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑏𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 0.   6 𝜇𝐹𝑘𝑚 ∙ 50 𝑘𝑚 =  6.08 𝜇𝐹 3-6 

With this, the capacitive earth fault current 𝐼𝐶𝐸 , which depends on the nominal frequency and on the line-

to-ground capacitance, is as follows: 𝐼𝐶𝐸 = √ ∙ 𝜔 ∙ 𝑈𝑁 ∙ 𝐶𝐸 = √ ∙ 𝜔 ∙  0 𝑘𝑉 ∙  6.08 𝜇𝐹 =  74.9954 𝐴 3-7 

The reactive impedance 𝑋𝑃 and the inductance 𝐿𝑃 of the arc-suppression coil, to fully compensate the 

capacitive earth fault current 𝐼𝐶𝐸 , was determined as below: 

𝑋𝑃 =   ∙ 𝜔 ∙ 𝐶𝐸 =   ∙ 𝜔 ∙  6.08 𝜇𝐹 = 65.9846 Ω 3-8 

 𝐿𝑃 = 𝑋𝑃𝜔 = 65.9846 Ω𝜔 = 0.  00 6 𝐻 3-9 

The inductive current 𝐼𝑃 over the arc-suppression coil is the result of the nominal voltage divided by the 

inductance of the arc-suppression coil and the frequency: 𝐼𝑃 = 𝑈𝑁√ ∙ 𝜔 ∙ 𝐿𝑃 =  0 𝑘𝑉√ ∙ 𝜔 ∙ 0. 500 5 𝐻 =  74.9950 𝐴 3-10 

Due to rounding errors, there is a slight difference to the capacitive earth fault current 𝐼𝐶𝐸. 

With the set value 𝑋𝑃 of the reactive impedance of the arc-suppression coil, the software DIgSILENT 

PowerFactory calculated the capacitive earth fault current and the inductive current for the arc-
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suppression coil. The results are shown in Table 3-7. In comparison, the results do not deviate from the 

calculation by hand. 

 

Capacitive earth fault current 𝐼𝐶𝐸  174.995 A 

The inductive current of the arc-suppression coil 𝐼𝑃 174.995 A 

Table 3-7, 𝐼𝐶𝐸  and 𝐼𝑃 calculated by DIgSILENT PowerFactory 

Next, it was examined how the three phase-to-earth voltages at station A, the displacement voltage, and 

the current react when it comes to an earth fault in the voltage maximum of phase L2 at the end of 

branch 1 of the grid in Figure 3-7. The results were compared with the theory in [3] and [2]. 

Figure 3-8 shows the measured phase-to-earth voltages. Since the voltages were measured in the 

substation, the earth-faulted phase L2 is overlaid with high-frequency voltages due to reflections of the 

traveling wave at each end of the network. The traveling wave originated at the earth fault position and 

spread in both directions. It is different when the voltages are directly measured at the earth fault 

position, as shown in Figure 3-9. 

 

Figure 3-8, earth fault in a voltage maximum measured in the substation 

By an ignition in the voltage maximum of the phase-to-earth voltage, the earth-faulted phase discharges 

and the network immediately tries to charge the healthy phases by the factor √ . This strong charging 

process leads to voltage peaks in the healthy phases before reaching the stationary state, which can be 

seen in Figure 3-8 and in Figure 3-9. 
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Figure 3-9, earth fault in a voltage maximum measured at the fault position 

Figure 3-10 shows the displacement voltage and current over the arc-suppression coil. The current 

indicates that the earth fault current at the fault position is compensated immediately. Regarding the 

ignitions of earth faults in the voltage maximum, the displacement voltage does not include any DC 

components. The harmonics occur because of the transient response of the charging process in the 

healthy phases. 

 

Figure 3-10, displacement voltage and current through the arc-suppression coil 
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In the following figures, it is shown how the network responds if the ignition of the earth fault is in the 

voltage minimum. As shown in Figure 3-11, the current over the arc-suppression coil contains a declining 

DC component, as well as the voltage of the earth-faulted phase L2 Figure 3-13. The value of the DC 

component depends only on the parameters of the arc-suppression coil. Different than before, with the 

ignition in the maximum, in the minimum, the discharging process is not applicable. Only the charging 

process of the healthy phases occurs.  

 

Figure 3-11, earth fault in a voltage minimum measured in the substation 
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Figure 3-12, earth fault in a voltage minimum measured at the fault position 

 

 

Figure 3-13, displacement voltage and current through the arc-suppression coil 

The results of these measurements correspond with the theory in [3] and [2], and therefore indicate the 

correctness of the simulations. Since the first ignition of an earth fault usually occurs in or near the 

maximum of the phase-to-earth voltage, all earth fault ignitions were simulated in the phase-to-earth 

voltage maximum. [2] 
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3.3.4 Extended Grid Models for Earth Fault Localization 

For the earth-fault-locating task, different grid models were simulated to investigate the limits of such 

earth-fault-locating neural networks. These extended grid models are introduced below. The method for 

data generation for the earth-fault-locating task was almost the same as for the fault classification task. 

The variations of the single grid parameters during the simulations were held on the outcomes of the 

sensitivity analysis. Different exemplary grid models were examined, which differed in complexity. All 

grid models were 20kV compensated medium voltage cable networks, that differed in cable lengths, 

number of local grid stations, and fanouts. The measuring position of the three voltages and currents 

was in the substation. The generated data was used to train neural networks for earth fault locating. The 

results of the earth-fault-locating neural networks are shown in chapter 5.2. 

3.3.4.1 Model for Earth Fault Localization, 4 Stations 

The first investigated exemplary grid model is shown in Figure 3-14. The 20kV compensated medium 

voltage cable network consists of four local grid stations. All such stations are connected with a 5 km 

cable. Each station consists of a power infeed and a load. Earth faults were simulated along each cable 

at branch 1 in 10% steps from 10% to 100% relative to the cable length. The aim of the earth-fault-

locating neural network was to localize these simulated earth faults between the stations by 

classification.  

 

Figure 3-14, earth fault simulation with four stations on the affected feeder. 

In Figure 3-14, the healthy residual grid consists of six branches, each with a 5 km cable line. The power 

of the residual grid is represented in branches 6 and 7. For simplification and their low impacts on earth 

faults in branch 1, branch 2 to 5 are without any loads. The grid operates 5% overcompensated. 

As mentioned, the aim was to locate earth faults between the four stations through the classification by 

a neural network, whereas the voltages and currents measured in the substation were the input of the 

neural network. Earth faults were only simulated in phase L2 since the correct fault differentiation 

Measuring position 
Aim: to locate earth faults between stations. 
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through a neural network was part of the previous fault classification task. During the simulation, the 

following parameters were varied: 

 Varied Steps 

Earth fault position From 10% to 100% 10% 

Loads at stations A, B, C and D From 0 to 0.3 MW 0.3 MW 

Load at branch 6 From 1 to 5 MW 4 MW 

Table 3-8, varied parameter during simulation 

The earth fault position relative to the cable’s length ranged from 10% to 100% in 10% steps for each 5 

km cable. The power of the four loads of the earth-faulted branch 1 ranged between 0 and 0.3 MW in 

0.3 MW steps. The power of the load of the residual healthy branch 6 ranged between 1 and 5 MW in 4 

MW steps. 

The power infeeds at the four stations (Station A, Station B, Station C, and Station D) were constant at 

0.15 MW. Thus, during simulation, if the power of a load in one station is 0 MW, the station fed in 0.15 

MW, otherwise, the station draws power from the branch. The load at branch 7 was constant at 5 MW 

and did not vary. All loads and external branches operated with a power factor of 0.95 inductive.  

Table 3-9, constant parameter 

Through this variation process, 1,280 data samples were generated. As before, the generated data 

samples were stored as CSV files and included the type of fault, the failure location, and all the 

parameters, which changed during the simulation. 

3.3.4.2 Model for Earth Fault Localization, 9 Stations 

The second exemplary grid model in Figure 3-15 consists of nine local grid stations and cable 

connections of different lengths, from 1 to 4 km. As in the previous grid model, the measuring position 

for the currents and voltages was in the substation at branch 1. The aim of the neural network remained 

the same: to locate the earth faults between the nine stations. In this case, it was investigated how an 

earth-fault-locating neural network reacts if it comes to a more complex grid model. 

 

 Constant 

Power infeeds at station A, B, C, and D 0.15 MW 

Load at feeder 7 5 MW 
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Figure 3-15, earth fault simulation with nine stations on the affected feeder 

During the simulation, the following parameters were varied: 

 Varied Steps 

Earth fault position From 10 to 100% 10% 

Loads at station A, C, F and I From 0 to 0.3 MW 0.3 MW 

Load at branch 6 From 1 to 5 MW 4 MW 

Table 3-10, varied parameter during simulation 

The earth fault position relative to the cable’s length ranged from 10 to 100% in 10% steps for each 

cable. The power of the four loads in the local grid stations A, C, F, and I of the earth-faulted branch 1 

were varied between 0 to 0.3 MW in 0.3 MW steps. The power of the load of the residual healthy branch 

6 ranged between 1 and 5 MW in 4 MW steps. 

Table 3-11, constant parameter 

The power infeeds at the nine stations were constant at 0.15 MW. Thus, during simulation, if the power 

of a load in one station is 0 MW, the station fed in 0.15 MW. Otherwise, the station took power from the 

branch. The loads that were not varied were constant at 0.4 MW. The power of the load at branch 7 was 

continuously 5 MW.  

As before, the generated data samples, including the type of fault, the failure location, and all the 

parameters, which have changed during the simulation, were stored as CSV files. A total of 2,880 data 

samples were generated. 

 Constant 

Power infeeds at station A to I 0.15 MW 

Loads at station B, D, E, G, H 0.4 MW 

Load at feeder 7 5 MW 

Measuring position 

Aim: to locate earth faults between stations. 
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3.3.4.3 Model for Earth Fault Localization, 8 Stations, One long Fanout 

The third exemplary model consists of eight stations, with the same structure as in the previous grids 

but including one long fanout of 10 km at station C. The cable lengths at the faulty branch ranged from 

1 to 3 km. In this case, the subject of the investigation is how a neural network performs when it comes 

to parallel cables. It was examined how a long fanout of 10km influences the results of an earth-fault-

locating neural network. The earth-fault-locating neural network’s aim remains the same to locate the 

earth faults between the local grid stations at branch 1.  

 

Figure 3-16, earth fault simulation with eight stations on the affected feeder, including one long fanout 

During the simulation, the following parameters were varied: 

 Varied Steps 

Earth fault position From 10 to 100% 10% 

Loads at station A, C, D and BA From 0 to 0.3 MW 0.3 MW 

Load at branch 6 From 1 to 5 MW 4 MW 

Table 3-12, varied parameter during simulation 

The earth fault position relative to the cable’s length ranged from 10 to 100% in 10% steps for each 

cable at branch 1. The power of four loads in the local grid stations A, C, D, and BA of the earth fault 

branch 1 were varied between 0 and 0.3 MW in 0.3 MW steps. The power of the load of the residual 

healthy branch 6 was varied between 1 and 5 MW in 4 MW steps. 

Table 3-13, constant parameter 

The generated data samples were stored as CSV files. A total of 2560 data samples were generated. 

 Constant 

Power infeeds at station A to E and BA to BC 0.15 MW 

Loads at station B, E, BB, and BC 0.4 MW 

Load at branch 7 5 MW 

Aim: to locate earth faults between stations. 
Measuring position 
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3.3.4.4 Model for Earth Fault Localization, 8 Stations, One Fanout 

The fourth exemplary grid model has the same structure as the model in the previous section, but just 

with a shorter fanout of 2 km. It was investigated how a neural network performs when the parallel 

sections are more related to each other, through a shorter fanout of 2 km. Additionally, to see what 

influence that the number of data samples has on the training results of an earth-fault-locating neural 

network, the grid model in Figure 3-17 was simulated twice:  

- once with earth faults relative to the cable length from 10 to 100% in 10% steps for each 

cable at branch 1, 

- and once from 10 to 100% of the cable length in 2.5% steps. 

 

Figure 3-17, earth fault simulation with eight stations on the affected feeder, including a fanout. 

Simulations and variations of the grid parameters also took place in the same way as in the previous 

model. The only difference is the fanout cable of 2 km instead of 10 km. 

The varied and constant parameters of the grid remain the same with: 

 Varied Steps 

Earth fault position From 10 to 100% 10% 

Loads at station A, C, D and BA From 0 to 0.3 MW 0.3 MW 

Load at feeder 6 From 1 to 5 MW 4 MW 

Table 3-14, varied parameter during simulation 

 

Measuring position Aim: to locate earth faults between stations. 
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Table 3-15, constant parameter 

With 10% steps, 2,560 data samples were generated, and with 2.5% steps, 10,240 data samples were 

generated. The resulting amount of data samples of the second simulation is four times greater than of 

the first one, with 10% steps. In chapter 0, the different training performances and test results are shown. 

Further, this grid model was applied to investigate the limits of the earth-fault-locating neural network in 

different scenarios. The simulations took place in the same way as before with executed earth faults in 

10% steps along the cables. In all three scenarios, the same amount of 2,560 data samples were 

generated. 

In the first scenario, the power infeed at station C was removed to investigate what influence a single 

power infeed on the performance of a neural network has.  

 

Figure 3-18, earth fault simulation with eight stations on the affected feeder, including a fanout, and 
without a power infeed in station C 

 

In the second scenario, it was examined how the neural network’s performance changes if no power 

infeeds along the affected branch are included. 

 

 Constant 

Power infeeds at stations A to E and BA to BC 0.15 MW 

Loads at stations B, E, BB, and BC 0.4 MW 

Load at feeder 7 5 MW 
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Figure 3-19, earth fault simulation with eight stations on the affected feeder, including a fanout, and no 
power infeeds 

 

In the third scenario, to find out what influences the loads and power infeeds have, the same grid model 

was simulated again in open circuit operation. Without any loads and power infeeds along the affected 

feeder. 

 

Figure 3-20, earth fault simulation with eight stations on the affected branch, including a fanout and in 
open circuit operation 
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3.3.4.5 Model for Earth Fault Localization, 7 Stations with an identically parallel section 

The last exemplary model consisted of seven stations at the faulty branch. Hereby, the stations of the 

parallel section were totally identical, including the same lengths of the cable connections. Also, the 

variations during the simulation were identical in the parallel section. The emphasis lies in this grid model 

on the parallel section. In this case, the question was, is it possible to localize earth-faulted sections in 

a theoretical total identical parallel section? 

 

Figure 3-21, earth fault simulation with seven stations on the affected feeder, with a total identically 
parallel section 

During the simulation, the following parameters were varied: 

 Variated Steps 

Earth fault position From 10 to 100% 10% 

Loads at station A, C, D and BA From 0 to 0.3 MW 0.3 MW 

Load at branch 6 From 1 to 5 MW 4 MW 

Table 3-16, varied parameter during simulation 

The earth fault position was relative to the cable’s length, from  0% to  00% in  0% steps for each 

cable. The power of the four loads in stations A, C, D, and BA of the earth-faulted branch 1 were varied 

between 0 and 0.3 MW in 0.3-MW steps. The power of the loads of the residual healthy branch 6 varied 

between 1 and 5 MW in 4-MW steps. 

Table 3-17, constant parameter 

 Constant 

Power infeeds at station A to E and BA to BB 0.15 MW 

Loads at station B, E, and BB 0.4 MW 

Load at branch 7 5 MW 
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The power infeeds at the seven stations were constant 0.15 MW. The not variated loads were constant 

0.4 MW. Thus, during simulation, if the power of a load in one station was 0 MW, the stations fed in 0.15 

MW. Otherwise, the station took power from the feeder.  

With this grid configuration, 2240 data samples were generated.  
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4 Artificial Intelligence, Machine Learning, and 

Deep Learning 

“We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us.” [17] 

 
As humans, we used to explore ways of thinking, the process of understanding, and the manipulation 

of things. With artificial intelligence, we go one step further and try not only to understand how it works 

but also to create intelligence technical systems. Today, artificial intelligence is comprised of a vast 

number of applications, from an application for playing chess to image-classification and diagnostic 

tools. Artificial intelligence has already become a universal field. [17] 

4.1 Artificial Intelligence 

AI, in general, is a vast field that encompasses machine learning as well as deep learning, as shown in 

figure 4-1.  

 

4-1 Artificial intelligence, machine learning, and deep learning, [18] 

It includes approaches and applications that do not require any learning and that just seem to be 

intelligent. Examples of this include early chess programs, which were created by programmers. From 

the 1950s, when the first AI concepts were published, until the late 1980s, many experts believed 

human-level AI could be reached with just a large number of explicit rules, handcrafted by programmers. 

Such approaches are called symbolic AI. [18] 

Nevertheless, it did not work out for more complex, fuzzy problems, such as speech recognition, 

language translations, and the classification of images. Machine learning took symbolic  I’s place in 

order to solve these kinds of problems. [18] 

Artificial 
intelligence

Machine
learning

Deep
learning
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4.2 Machine Learning 

In classical programming, the rules created and coded by humans are processed with data to get an 

output. In other words, data is processed according to handcrafted rules, and that process has answers 

as output (see figure 4-2). A machine learning algorithm outputs rules which are trained on input data 

as well as the answers expected from the input data.  These rules can then be applied to new data. [18] 

 

4-2, classical programming and machine learning, [18] 

A machine-learning system can be trained by many examples relevant to a task. During the training 

process, the ML algorithm maps the input data to their expected and known answers, also called targets, 

that, in the end, eventually allows the ML system to come up with rules [18]. For example, to classify the 

type of a short circuit with an ML system, many examples of short circuits already labeled (classified) by 

humans are needed. The ML system would learn statistical rules for classifying the type of a short circuit 

for never-seen-before data.  

In short, machine learning learns rules from a collection of input-output pairs to predict outputs for new 

inputs. To be able to do that, three things for machine learning are needed, as described in [18]:   

- Input data: If the task is short circuit classification, the data points could be measurement data 

of different types of short circuits. 

- Examples of the expected output: The measurement data could be labeled as the type of 

short circuit, for instance, as a 3-phase short circuit. 

- Verification of the algorithm: It is essential to know the difference between the output of the 

ML system and its expected output. The measured difference is used as a feedback signal to 

adjust the ML algorithm. This adjustment is called learning and is executed by the 

backpropagation algorithm. [18] How the backpropagation algorithm works will be explained in 

section 0. 

Learning in this context means finding appropriate representations for the input data to get the system’s 

output closer to the expected output. Representations are a different way to represent or encode data. 

Such transformations like linear projections, nonlinear operations, coordinate changes, or decision trees 

to automatically find more useful representations are contained in all machine-learning algorithms. The 

algorithms are searching through a predefined set of operations, which is called the hypotheses space. 

To sum up, machine learning algorithms search for good representations in the input data, within a 

predefined space of possibilities, the hypotheses space, while using a feedback signal as guidance. [18] 
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4.3 Deep Learning 

This master’s thesis will rely on neural networks to classify faults and locate earth-faulted sections.  

As illustrated above, deep learning is a subfield of machine learning. It is a particular way to learn 

representation from input data while using successive layers. The models in deep learning are called 

neural networks. The number of successive layers in a neural network is referred to as the depth of the 

neural network. A neural network can be tens to hundreds of successive layers deep. Although the term 

“neural network” refers to neurobiology, there is no evidence that the human brain implements any of 

the learning mechanisms used in modern deep-learning neural networks. Instead, the term takes 

inspiration from our understanding of how the human brain might learn. [18]  

The neural network–related core ideas on which deep learning is based originated in the 1950s, but the 

first breakthrough took decades. The main reason for this delay was the lack of an efficient way to train 

such large networks. This changed in the mid-1980s, when the backpropagation algorithm was 

rediscovered by multiple scientists. The backpropagation algorithm uses gradient-descent optimization, 

which allows the training of chains of parametric operations. In the 1990s, the first practical application 

of neural networks was used by the United States Postal Service for reading handwritten ZIP codes on 

mail envelopes. This application came from Bell Labs, especially from Yann LeCun, who combined 

neural networks and backpropagations to classify handwritten digits. [18] 

At the beginning of the 2010s, scientists from the University of Toronto, Montreal, New York City, and 

the AI Lab ISDIA in Switzerland made important breakthroughs in the field of neural networks. In 2011, 

IDSIA began to win academic image-classification competitions with trained deep neural networks, 

which was at the same time the first practical success of modern deep learning. In 2012, a team of 

scientists from the University of Toronto participated in the large-scale image classification challenge 

named ImageNet. This challenge consisted of classifying high-resolution color images into 1000 

different categories after training on 1.4 million images. The team achieved a top-five accuracy, which 

was a significant breakthrough at that time. Since then, the ImageNet challenge has been dominated by 

deep neural networks and was considered to be completed after a participant reached, with a neural 

network, an accuracy of 96.4% in 2015. After such achievements, deep learning has found applications 

in many perceptual tasks such as computer vision or natural language processing. [18] 

4.3.1 Different Kinds of Deep Learning 

Neural networks can be trained in different ways for different applications. Four main methods are 

presented below. 

4.3.1.1 Supervised Learning 

In supervised learning, the neural network is trained on input/ output pairs. The neural network is trained 

on data where the targets for the input data are already known. If the trained neural network is applied 

to new data, it predicts an output based on the data it was trained on. This method is called supervised 
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learning and is the most common method in deep learning. [17] [18] In this master’s thesis, the focus is 

on supervised learning.  

4.3.1.2 Unsupervised Learning 

In unsupervised learning, the neural network learns similarities in the input data without an explicit 

feedback signal. The most common task in unsupervised learning is clustering—the distinguishing of a 

possible useful cluster from input samples without any targets. It is often used in data analytics to get a 

better understanding of a dataset before using supervised learning. [8] [9] 

4.3.1.3 Self-Supervised Learning 

Self-supervised learning is in some way like supervised learning, but without the part of human labeling. 

The labels are generated from the input data using heuristic algorithms. An example of self-supervised 

learning is an autoencoder, the goal of which is to reconstruct the input data and to learn how it is 

represented in the data. [18] 

4.3.1.4 Reinforcement Learning 

Reinforcement learning is a method in which the neural network learns on reinforcements of rewards 

and punishments. The neural network receives information about the environment, and it tends to set 

actions to increase and maximize the rewards. [18] According to [18], reinforcement learning will soon 

be used in applications such as robotics and self-driving cars. 

4.3.2 How Deep Learning Works 

As a subfield of machine learning, deep learning is a mathematical framework for learning 

representations from input data. Figure 4-3 shows a neural network with four layers for fault 

classification. Each layer turns its input data into representations, which are increasingly more 

informative about the final result. In such a classifications task, the output of a neural network is the 

class with the highest resulting probability in the final layer. With this, the successive layers can be 

imagined as a multistage information distillation. The data, in an already trained neural network, goes 

through the layers and comes out in one pot of the different categories. In Figure 4-3, the original input 

displays three voltages during a 3-phase short circuit. The input goes through successive layers and is 

classified in the final layer as a 3-phase short circuit.  
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Figure 4-3, Deep neural network for short circuit classification, [18] 

Layers in a neural network consist of nodes, learnable parameters, or so-called neurons [19]. The 

neurons in one layer are connected to the neurons in the previous and following layer. The connections 

are parameterized by their weights. What layers do to its input data is stored in the layers’ weights. 

These weights are parameterized and adjusted during the training process. [18]  

In a neural network, each value of the input data is allocated to one neuron in the input layer. The input 

layer has no parameter to learn, and therefore, those connections are not weighed. [19] In the case of 

a 3-phase short circuit, as shown in Figure 4-4, each value of the three measured voltages and currents 

is connected to one neuron of the input layer. A time series of 4002 steps and six measured quantities 

results in 24,012 neurons for the input layer. The input layer is followed by two successive, fully 

connected (dense), hidden layers consisting of four neurons. It is followed by the final layer as the output 

layer, which contains nine neurons as the number of short-circuit classes is. The output layer, finally, 

shows the probability distributions for all nine classes. For the 3-phase short circuit example, each type 

of fault receives a certain percentage of the probability. The highest prediction is the choice of the neural 

network. 
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Figure 4-4, the architecture of a neural network 

Each neuron in a neural network contains a score resulting from the activation function. The activation 

function transforms the weighted input connections into the activation, or score, of the neuron. The 

activation of a neuron can be seen as output. 

 

Figure 4-5, a simple mathematical model of a neuron [17] 

As shown in Figure 4-5, such a neuron consists basically of  

- input links, which result in the sum of all weighted connections,  

- an activation function 𝑔, like 𝑟𝑒𝑙𝑢 or 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, and  

- an output 𝑎 of the activation function, called the activation of a neuron.  

For a neuron 𝑗, 𝑘, the output is as follows. [17] 

𝑎𝑗 = 𝑔(∑𝑤𝑖,𝑗𝑎𝑖𝑛
𝑖=0 ) = 𝑔(𝑖𝑛𝑗) 4-1 
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In other words, the activation of each neuron in a layer is based on the weighted sum of all the activations 

in the previous layer plus a specific bias. For example, an activation 𝑎1,0 in the first hidden layer is 

determined through the following function: 𝑎1,0 = 𝑟𝑒𝑙𝑢(𝑤0,0𝑎0,0 + 𝑤0,1𝑎0,1  + ⋯+ 𝑤0,24011𝑎0,24011 + 𝑏) 
where 𝑤𝑜,𝑛 and 𝑎𝑜,𝑛 are the weighted links and activations from the input layer, and 𝑏 a bias attribute is. 

The operation 𝑟𝑒𝑙𝑢 (rectified linear unit) is a ramped function that zeros out all negative values. 𝑟𝑒𝑙𝑢 is max ( , 0). With a bias 𝑏 of 𝑏 = − 0, for example, the activation will only be activated when the weighted 

sum is greater than ten. The bias contributes that only meaningful activations are active. Next to the 𝑟𝑒𝑙𝑢 function, many other activation functions exist. One of these is the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function 
11+𝑒−𝑥, which is 

a scaled and shifted hyperbolic function. However, 𝑟𝑒𝑙𝑢 is the most common and popular function in 

deep learning. Embedded in a matrix and vector form for all activation in a layer: [18] 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑙𝑎𝑦𝑒𝑟 = 𝑟𝑒𝑙𝑢(𝑑𝑜𝑡(𝑊, 𝑖𝑛𝑝𝑢𝑡) + 𝑏) 4-2 

The weight matrix 𝑊 will have the shape (number of neurons of the current layer, number of neurons of 

the previous layer). The 𝑖𝑛𝑝𝑢𝑡 vector consists of all activations from the last layer. Activations and 

weights determine activations in the next layer. All activations used in a neural network are differentiable. 

This advantage will be used to update the weights and biases during the training process. [18] 

The single values in the 3-phase short circuit example represent the activations in the input layer. The 

connections or links from the input layer to the first hidden layer are weighted through the training 

process and lead to activations of the first hidden layer. The first hidden layer is then connected to the 

second hidden layer in the same way, and so on. These kinds of neural networks are called feed-forward 

networks.  

4.3.3 Training Process 

All the weights in a neural network are adjusted during the training process. These adjustments are the 

main challenge in deep learning because what a neural network does is stored in its weights. [18]  For 

a fault classifying neural network, a high amount of already labeled training data is needed to start the 

training. 

The training loop is illustrated in Figure 4-6. The original input, for example, a 3-phase short circuit, is 

fed into the successive layers of the neural network. At the beginning of each training, all weights are 

initialized randomly. Thus, the neural network outputs some random predictions right from the beginning. 

The loss function compares these predictions with the correct targets (the desired predictions). The loss 

score indicates how well the neural network has done on a specific sample. This loss is used as a 

feedback signal for the optimizer. While using gradient descent, the optimizer adjusts all weights in the 

correct direction that will lower the loss score for the current example. This training loop is performed to 

every sample or to every batch of samples in the training data set. Usually, the training process needs 

to be repeated several times with a whole set of training data to reach a minimum in the loss. Such 

repetitions are called epochs. [18] 
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Figure 4-6, training process [18] 

Once a network reaches a minimum in loss, and outputs are as close to the correct targets as possible, 

the network is said to be a trained neural network. The backpropagation algorithm is the central algorithm 

in the training process and is located in the optimizer and uses gradient descent to update the weights. 

[18]  

4.3.4 Deep Learning with Gradient Descent 

The trainable parameters of a neural network are the weights and biases. For a starting point in the 

training process, they are initialized randomly. While training, these parameters are gradually adjusted, 

based on the feedback signal.  

A batch of samples with their corresponding targets are fed into the network to obtain predictions. The 

loss function then computes a loss vector about the targets of the network on that batch. The optimizer 

will then, based on the mismatch of the neural network’s predictions and targets, update all weights in 

it in a way that will lower the loss for the current batch. The gradient descent algorithm is implemented 

in the optimizer. The negative gradient shows the direction of the steepest descent in a local point of a 

multidimensional function. For minimizing the loss, the optimizer moves stepwise in the direction of the 

negative gradient. This step is called the learning rate of the training process. The following example 

shows how the gradient descent and the backpropagation algorithm are applied in a training loop. [18] 
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Figure 4-7, A neural network with two inputs, one hidden layer consisting of two neurons, and an 
output layer. 

The neural network shown in Figure 4-7 has two inputs, one hidden layer consisting of two neurons, and 

two neurons in the output layer. This example does not represent a real-world neural network, but 

through this, the training process can be explained in detail. The output function 𝑦’ is parameterized by 

the weights 𝑊. Assuming  1 and  2 are the two inputs, the activations in the input layer are set to (𝑎1, 𝑎2) = ( 1,  2). The output at neuron 𝑎5 is determined by the following function, where 𝑔 is the 

activation function: 𝑎5 = 𝑔(𝑤0,5 + 𝑤3,5𝑎3 + 𝑤4,5𝑎4) 
The activations 𝑎3 and 𝑎4 are in the hidden layer, which is connected to the input layer. 𝑎5 = 𝑔(𝑤0,5 + 𝑤3,5 𝑔(𝑤0,3 + 𝑤1,3𝑎1 + 𝑤2,3𝑎2) + 𝑤4,5 𝑔(𝑤0,4 +𝑤1,4𝑎1 + 𝑤2,4𝑎2)) 
The input neurons are set to  1,  2 and lead to the following: 𝑎5 = 𝑔(𝑤0,5 +𝑤3,5 𝑔(𝑤0,3 +𝑤1,3 1 + 𝑤2,3 2) + 𝑤4,5 𝑔(𝑤0,4 +𝑤1,4 1 +𝑤2,4 2)) 
Now, the output neuron is expressed as a function of inputs and weights. Such functions are 

differentiable; accordingly, it is possible to use the gradient descent loss-minimization method to update 

the weights. The neural network above has multiple outputs (two different categories/classes), which 

return as output a vector function 𝑌′(𝑊), precisely the vector [𝑎5, 𝑎6], with the same dimension as the 

expected output (target) 𝑌 = [𝑦1, 𝑦2]. The loss is the distance between the predicted output and the 

expected output of the neural network. [17] The gradient of the loss function for the 𝑘th neuron in the 

output layer with respect to any weight 𝑤, as it is described in [17]. 𝜕𝜕𝑤 𝐿𝑜𝑠𝑠(𝑊) = 𝜕𝜕𝑤 |𝑌 − 𝑌′|2 = 𝜕𝜕𝑤∑(𝑦𝑘 − 𝑎𝑘)2 =  ∑ 𝜕𝜕𝑤 (𝑦𝑘 − 𝑎𝑘)2𝑘𝑘  4-3 

With 𝑘 as an index for the neurons in the output layer. As shown through the final summation, each term 

represents the gradient for the 𝑘th. For the final weight update, each gradient contribution must be 

added. Thus, the 𝑚 output learning problem can be broken down into 𝑚 learning problems. [17] 

As mentioned above, the idea is to use the negative gradient descent to go a step 𝛼 (defined as the 

learning rate) downhill, to reach the global minimum. The weights linked from the neurons in the last 
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hidden layer to the neurons in the output layer are updated, while training, as follows, with the indexes 

i, j, and k for the neurons in the input-, hidden-, and output layer: 

𝑤𝑗,𝑘𝑛𝑒𝑤 = 𝑤𝑗,𝑘𝑜𝑙𝑑 −  𝛼 𝜕𝜕𝑤𝑗,𝑘 𝐿𝑜𝑠𝑠𝑘    4-4 

For the connections between the input neurons and the neurons in the hidden layer, the error needs to 

be backpropagated. Each hidden neuron 𝑗 is responsible for some fraction of the error in each of the 

output neurons. The error values are propagated back to provide error values for the hidden layers.  

𝑤𝑖,𝑗𝑛𝑒𝑤 = 𝑤𝑖,𝑗𝑜𝑙𝑑 −  𝛼 𝜕𝜕𝑤𝑖,𝑗 𝐿𝑜𝑠𝑠𝑘    4-5 

As in [17], the application of the backpropagation process can be summarized as follows: 

- Calculate the loss gradient for the neurons in the output layer 

- Iterate the following steps for each layer, beginning with the output layer to the first hidden layer: 

o Backpropagate the gradient loss to the previous layer 

o Update all weights between those layers  

In short, deep learning means minimizing a loss function. The goal is to find the global minimum for the 

best result by taking small steps downhill.  Hereby, the learning rate 𝛼 needs to be a reasonable value. 

When the learning rate is too low, it is easy to get stuck in a local minimum. Besides, a lower learning 

rate requires more computing capacity due to longer convergence time. If the rate is too high, the 

updates may end up taking completely random locations in the multidimensional function. [18]  

4.3.4.1 Backpropagation Example 

This section shows how the gradient descent algorithm is applied to a reduced and simplified neural 

network. The following example is held on [17] and [20]. In order to simplify the calculations, the example 

is calculated without biases. The neural network will be the same as already introduced in Figure 4-7.  

 

Figure 4-8, backpropagation example 

In general, all weights are initially assigned by a random function; here, the weights are chosen by hand. 

The given input and weight values are shown in Figure 4-8. As mentioned above, the training process 

aims to minimize the loss function through backpropagation. The wanted output (target) is for 𝑎1 =  0.0  
and for 𝑎2 =  0.99. 
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As activation function 𝑔( ), the sigmoid function is used.  

𝑔( ) =    + 𝑒−𝑥 4-6 

By using the function 4-1, the output of the hidden neurons ℎ1 and ℎ2 is calculated as follows to: 

ℎ1 = 𝑔 (∑𝑤𝑖,𝑗𝑎𝑖𝑛
𝑖=0 ) = 𝑔(𝑤1.1 1 + 𝑤2.1 2) = 0.506874567, 

ℎ2 = 0.5 06  40  

for the given input values in Figure 4-8. The same process is applied for the output neurons 𝑎1 and 𝑎2, 
resulting in:  𝑎1 = 0.6064777  , 𝑎2 = 0.6 04808 5. 
Next, the loss is determined by using the squared error function 4-3. 

𝐿𝑜𝑠𝑠(𝑊) = |𝑌 − 𝑌′|2 =  ∑(𝑦𝑘 − 𝑎𝑘)2 𝑘  

𝐿𝑜𝑠𝑠𝑎1 = (0.0 − 0.6064777  )2 = 0. 55785685 𝐿𝑜𝑠𝑠𝑎2 = (0.99 − 0.6 04808 5)2 = 0.  9 540  
To receive the total loss, 𝐿𝑜𝑠𝑠𝑎1 and 𝐿𝑜𝑠𝑠𝑎2 are added up: 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑎1 + 𝐿𝑜𝑠𝑠𝑎2 = 0.4850 97 5 

Starting with the weights connected with the output layer, the backpropagation algorithm is applied using 

equation 4-4,  with a learning rate of 0.5.  

𝑤𝑗,𝑘𝑛𝑒𝑤 = 𝑤𝑗,𝑘𝑜𝑙𝑑 −  𝛼 𝜕𝜕𝑤𝑗,𝑘 𝐿𝑜𝑠𝑠 = 𝑤1,1𝑛𝑒𝑤 = 𝑤1,1𝑜𝑙𝑑 − 𝛼(− (𝑦𝑘 − 𝑎𝑘)𝑎𝑘( − 𝑎𝑘)ℎ𝑗) = 0.4 − 0.5 ∙ 0. 44  4 46 = 0.  784 9 7  𝑤1,2𝑛𝑒𝑤 = 0.45754475 𝑤2,1𝑛𝑒𝑤 = 0. 77 09 55 𝑤2,2𝑛𝑒𝑤 = 0.507  075  

Now, the adjustments for these weights are determined. Next, equation 4-5 is applied to calculate the 

weights between the input- and hidden layers. The weights are only updated when all weights have 

been recalculated. Thus, for continuing the backpropagation, the original weights are used.  

𝑤𝑖,𝑗𝑛𝑒𝑤 = 𝑤𝑖,𝑗𝑜𝑙𝑑 −  𝛼 𝜕𝜕𝑤𝑖,𝑗 𝐿𝑜𝑠𝑠 
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𝑤1,1𝑛𝑒𝑤 = 𝑤1,1𝑜𝑙𝑑 − 𝛼 [∑− (𝑦𝑘 − 𝑎𝑘)𝑎𝑘( − 𝑎𝑘)2
𝑘=1 𝑤𝑗,𝑘] ∙  𝑎𝑗( − 𝑎𝑗)𝑎𝑖  = 0. 5 − 0.5 ∙ 0.000 765  = 0. 498  745  𝑤1,2𝑛𝑒𝑤 = 0. 49775 87 𝑤2,1𝑛𝑒𝑤 = 0. 996  489 𝑤2,2𝑛𝑒𝑤 = 0. 99550 7  

After all new weights are determined, the new total loss of the neural network can be calculated. In this 

case, the new total loss is as follows. 𝐿𝑜𝑠𝑠𝑛𝑒𝑤 = 0.47 6  467 
The first total loss was 0.4850 97 5. After the weight adjustment, the total loss decreased to 0.47 6  467. By this example, it was shown how a weight update in a neural network works. If the 

algorithm is repeated a sufficient number of times, the total loss would finally reach a minimum. When 

scaled up in layers and neurons, such a neural network is able to learn patterns in large data sets to 

classify, for example, short circuits. 

4.3.5 Training, Validation, and Test Sets 

To be able to evaluate the training process and the neural network itself, before training, the data is split 

into three parts: training, validation, and test data sets. While training, the neural network is trained on 

the training data and evaluated by the validation data set. Once it is trained, it is finally evaluated on a 

test data set that the neural network has never seen before. [18] It is common to split the data, as shown 

in Figure 4-9, and use 70% for training and 15% for validation and 15% for testing.    

 

Figure 4-9, training, validation, and test set 

4.3.6 Overfitting and Underfitting 

The central obstacle in machine learning is overfitting. A fundamental issue is the tension between 

optimization and generalization. Optimization refers to the process of adjusting a model based on the 

training data. In contrast, generalization refers to how well the model performs on never-before-seen 

data. The aim is to reach a useful generalization based on the training data. Overfitting happens when 

the model is doing well on the training data but worse on the validation data. [18] 

Training data

70%

Validatio

n data
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Test data
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Figure 4-10 shows a training example of a neural network. On the left, the loss of the training and the 

validation data set, while training. On the right, vice versa the loss, the accuracy of the training and 

validation data. For example, the accuracy (in percent) can be used as a guideline of how many samples 

were classified correctly. For the whole data, the training loop was repeated 25 times, counted in epochs.  

 

Figure 4-10, overfitting and underfitting 

Since all weights are initialized randomly, the loss is very high in the beginning, but rapidly decreases 

after a few epochs. While the training and validation loss are correlating, the neural network is said to 

be underfitted. In other words, the neural network has not learned all relevant patterns in the data yet. 

But at a certain point, the neural network starts to only improve on the training data and do worse or 

stagnate on the validation data. The neural network starts to overfit. Thus, the neural network learns 

patterns, which are irrelevant when it comes to new data. [18] 

To prevent under- and overfitting, it is important that the training process is stopped at the right time. 

For example, in Figure 4-10 that would be between epoch eleven and thirteen. Otherwise, the neural 

network can still make progress or is too adjusted to the training data. 

Next to the right stopping of the training, the best solution to prevent overfitting is to use more data. The 

more training data, the better the neural network will generalize. When no more data is available, several 

techniques can be applied to prevent overfitting. These techniques are called regularizations. Below, 

the most common regularization methods are introduced, as in [18].  

4.3.6.1 Reduction of the neural network’s capacity 

The capacity refers to the number of layers and neurons used in a neural network. The more that are 

used, the higher the capacity. This includes the memorization capacity. Reducing this capacity is one of 

the simplest ways to prevent overfitting. [18] 

On the other hand, if the neural network’s capacities are too low, it won’t be able to learn correctly and 

will eventually underfit. Since there is no formula or equation to determine the capacity of a neural 

network, one should start the training with a small network and increase the number of layers and 

neurons step-by-step until the results show a proper generalization. [18] 

Good model
OverfittingUnderfitting

Good model

OverfittingUnderfitting
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4.3.6.2 Weight regularization 

When applied, weight regularizations ensure that weight values are given less entropy, which mitigates 

overfitting. The weights must take small values, which makes the weight distribution more regular. The 

loss function adds a specific cost for large weights. As described in [18], there are two common weight-

regularization methods. 

- L1 regularization. The cost is added proportionally to the absolute value of the weight coefficient. 

This is known as the L1 norm of the weights. 

- L2 regularization. The cost is added proportionally to the square value of the weight coefficients. 

This is known as the L2 norm of the weights. In the context of neural networks, the L2 

regularization is also called weight decay.  

4.3.6.3 Dropout 

One of the most commonly used and effective techniques to prevent overfitting is the dropout method. 

The method is applied to one or more layers in the neural network. By using dropout, a predetermined 

percentage (dropout rate) of neurons is dropped out during training. Commonly, the chosen dropout rate 

is between 0.2 to 0.5. By a dropout rate of 0.2, 20% of the neurons on the applied layer are zeroed out. 

Dropout forces the neural network to learn more robust representations and helps to improve 

generalization. [18] 

4.3.7 Keras 

Keras is an open-source deep learning library from Google, written in Python. The library was created 

by François Chollet in 20 5 and  uickly became the world’s most used library for deep learning. [18] It 

is famous for its user-friendly and modular structure. Keras provides a uniform API (application 

programming interface) for various backends, like Tensorflow, Microsoft Cognitive Toolkit, and Theano. 

[18] In this master’s thesis, Tensorflow with Keras was used to build neural networks. In the appendix, 

a code example of a neural network is shown in detail. 

4.3.8 Data Preparation 

Since all fault samples were stored in CSV files, it was needed to prepare the data samples in a way 

that the samples can be fed into neural networks. All samples were labeled through their CSV file names. 

The contained data and their corresponding labels had to be stored in separate arrays so that the 

samples could be fed into neural networks. The data preparation followed the following procedure. 
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Figure 4-11, data preparation 

First, all data files were loaded. Second, the data files needed to be randomly shuffled to avoid any 

misleading structure in the data, which can lead to wrong representations in the training data. This also 

makes sure that the training, validation, and test data sets have near the same relative number of 

different labels in their data sets. After it, the data was split into training 70%, validation 15%, and test 

15% data sets.  

In the next step, the individual CSV files were read and written into arrays. In the same step, their 

corresponding labels were written into a separate array. This approach was applied to every single data 

file. In the end, each sample, in the input array, corresponded to its respective target in the label array. 

For example, the 10th sample in the input array corresponded to the 10th label in the label array. How 

this was done exactly can be seen in the appendix. After this procedure, the data was ready to be fed 

into neural networks.   
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5 Results 

Neural networks were trained to classify faults and to locate earth-faulted sections in compensated 

medium voltage networks. The simulated and generated data, shown in chapter 3, served as a data 

basis for the development of neural networks.  

5.1 Fault Classification 

The first task was to classify different kinds of faults via a neural network. The 20kV compensated 

medium voltage grid shown in Figure 5-1 was the exemplary grid used for the fault classification task.  

As introduced in subchapter 3.3.2, the following faults were simulated along cable1 with the measuring 

position in the substation. 

Simulated Faults: 

- Earth fault L3 

- Earth fault L2 

- Earth fault L1 

- 2-phase short circuit L1–L3 

- 2-phase short circuit L2–L3 

- 2-phase short circuit L1–L2 

- 3-phase short circuit 

 

Figure 5-1, a grid for fault simulation 

5.1.1 Results 

Before the training took place, the 3,360 data samples were split into training data (70%), validation data 

(15%), and a test data set (15%). As mentioned above, the neural network was trained on the training 

data and evaluated on the validation data. The test data can show how well a neural network is 

generalized to data in which it is not trained. 

Measuring position 
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Figure 5-2 shows the training results of the fault-classifying neural network. The left diagram displays 

the loss of the training and validation data. The curves indicate a good generalization since they 

decrease almost parallel to a minimum after six epochs.  

The right diagram displays the training and validation accuracy. The accuracy of the training and 

validation data shows to what extent the neural network made correct predictions during the training. 

After six epochs, the neural network could predict with 100% accuracy regarding the validation data set. 

The lines are increasing in the same way the loss decreases, indicating a proper generalization. For the 

remaining never-before-seen 15% test data set (504 data samples), the neural reached 100% accuracy. 

It is another indicator that the neural network was well-trained. These results show that a neural network 

is capable of classifying faults. 

The difference between the training and validation loss is that the training loss is the average loss of all 

training samples running through the training loop during one epoch. The validation loss is the average 

loss of all validation samples measured at the end of one epoch. In the beginning of an epoch, the neural 

network is less trained than in the end of an epoch. That is why the validation loss is lower than the 

training loss. The same goes, just vice versa, for the training and validation accuracy. 

 

Figure 5-2, training and validation loss (left), training and validation accuracy (right) 

A neural network for classification puts out probabilities for each class. The class with the highest 

probability is the neural network’s choice or prediction for an input. Figure 5-3 shows the probability 

distribution of the neural network over the different classes of 100 randomly selected test samples. The 

entire test data set contains 504 samples but would not fit on the paper. Therefore 100 samples were 

chosen at random. The 100 randomly selected test samples were compared to the whole test samples 

to avoid any wrong conclusions out of the 100 test samples. 

In Figure 5-3, the red x in the diagram show which type of fault received the highest probability from the 

neural network. The white dots show the actual type of the fault. In this case, all faults are predicted 

correctly. On the y-axis, the different faults are listed. The x-axis shows the test samples, which are 

independent of each other. The test samples are sorted according to the type of fault. 

 

Accuracy of 100%, on the never-before-seen test data set. 
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Figure 5-3, diagram for the probability distribution on 100 randomly chosen test samples 

This visualization (Figure 5-3) allows to evaluate the neural network’s  uality. The color bar on the right 

enables a correlation between the color and probability distribution for each sample. The more yellow, 

the higher the predicted probability for a certain type of fault. The darker, the lower the probability.  

The diagram shows the high quality of the predictions of the neural network due to the correct and highly-

rated predictions. All faults were correctly predicted. The single predictions received at least a probability 

of 75%, which indicates such a high quality of the results. These results lead to the conclusion that 

neural networks are capable of fault classification. 

5.2 Earth Fault Localization 

As described above, the goal for the earth-fault-locating neural networks was to locate earth fault 

positions between local grid stations. Investigated were different grid topologies that differed in 

complexity, to find out limits of such earth-fault-locating neural networks. 

5.2.1 Model 1 - 4 Stations 

A neural network was trained with the aim to locate earth-faulted sections along an affected branch. The 

first grid model for the earth-fault-locating task, as introduced in subchapter 3.3.4.1, consisted of four 

local grid station connected with cables of the same length.  

 

Figure 5-4, earth fault simulation with four stations on the affected feeder. 

Measuring position 

Aim: to locate earth faults between stations. 
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5.2.1.1 Results 

The generated data was split into 70% training data, 15% validation data, and 15% test data. The training 

performances are shown in Figure 5-5. On the left side, the training and validation loss is shown, and 

on the right side, the training and validation accuracy. The curves in the loss and in the accuracy diagram 

are decreasing and increasing almost in the same way, which is a good sign for a proper generalization.  

 

Figure 5-5, training and validation loss (left), training and validation accuracy (right) 

Through random initialization at the beginning of the training process, the loss is very high, and the 

accuracy is very low. After eight epochs of training, the process was stopped at an optimum, where the 

neural network was not underfitting or overfitting. The accuracy of the validation data reached at the end 

was 100% and indicated such an optimum. With the test data set, an accuracy of 100% could be 

achieved. 

In order to assess the strengths and weaknesses of the earth-fault-locating neural network, the 

probability distribution of the neural network’s outcome was visualized. Figure 5-6 shows 100 test 

samples. The 100 test samples were selected from the test data set by a randomizing function. The 

entire test data set would not fit on the paper size. It was ascertained that the random test samples do 

not change the conclusion of the results. The test samples were sorted by their simulation position on 

the cables. Thus, it was possible to identify how the neural networks react at transition points. 

On the y-axes of the diagram, the single-cable sections are listed. On the bottom, the first cable of the 

faulty branch, and on the top the last cable. The x-axis shows the test samples, which are independent 

of each other. The background color indicates the probability distribution for each cable on a test sample. 

The more yellow it is, the higher the predicted probability of an earth fault along a cable. The darker it 

is, the lower the predicted probability of an earth fault. The sum of the probability distribution for each 

test sample is one.  

The white dots indicate where the earth faults are actually located, and the red x ’s indicate where the 

earth faults were predicted to be with the highest probability by the neural network. In this case, the 

predicted cable is always the one with the highest probability. In general, this type of diagram gives a 

good overview of how well a neural network works in a particular grid. 

Accuracy of 100%, on the never-before-seen test data set.  



Results 

61 

 

Figure 5-6, diagram for the probability distribution on 100 randomly chosen test samples 

Figure 5-6 shows that all earth fault locations were predicted correctly. At the beginning (Cable_1-A), 

the earth faults were predicted with 100% accuracy. At the transition points from one cable section to 

another, the probability of the correct faulty cable decreased to around 50 to 70%. In the middle of the 

cable sections, the probability output of the neural network for the correct prediction increased again. In 

summary, the diagram shows that neural networks can localize earth faults.  

5.2.1.2 Conclusion 

The diagram points out to what extent of accuracy the neural network is working for never-before-seen 

data. The visualization shows that the trained neural network can be a useful tool to locate the area or 

bound the area of the fault, although there are some uncertainties at the transition points. 

5.2.2 Model 2 - 9 Stations 

The second grid model for the earth-fault-locating task is shown in Figure 5-7, which consists of nine 

local grid stations and cable connections of different lengths. The aim of the earth-fault-locating neural 

networks remained the same, that is, to locate the earth faults between the nine stations. The aim of 

this grid model was to investigate the limits of the earth-fault-locating neural network by using a more 

complex grid model. 

 

Figure 5-7, earth fault simulation with nine stations on the affected feeder 

Measuring position 
Aim: to locate earth faults between stations. 
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5.2.2.1 Results 

The 2,880 data samples are split into training data (70%), validation data (15%), and test data (15%). 

In Figure 5-8, the training performances are shown. The training and validation loss and accuracy are 

correlated to each other, which indicates a good generalization of the neural network.  

 

Figure 5-8, training and validation loss (left), training and validation accuracy (right) 

The training stopped after eleven epochs. Thus, the neural network was not overfitting. For the never-

before-seen test data set, an accuracy of 93% was achieved. The accuracies of the test data set and 

the validation data set were nearly identical. These values also indicate a proper generalization of the 

neural network.  

Figure 5-9 displays the predicted probability distribution over 100 test samples. The cable sections are 

on the y-axis, and the test samples are on the x-axis. The red x show the predicted earth fault locations, 

and the white dots show the actual earth fault locations. 

 

Figure 5-9, diagram for the probability distribution on 100 randomly chosen test samples 

The visualization shows a high quality of the predictions at the beginning (first cable). “High quality” in 

this context means that the predicted earth fault positions are predicted correctly with a high probability, 

and incorrectly with a lower probability. At the transition points, that quality is lower; it is significantly 

lower the farther away the earth faults from the substation are. In sum, the figure shows with an accuracy 

of 93% that the neural network can classify earth-faulted cables. At the transition points, the neural 

network clearly marks the earth-faulted area.  

5.2.2.2 Conclusion 

Compared to the previous network model, it has been shown that the neural network can classify earth-

faulted cable sections with high accuracy, even if there were more grid stations and different cable 

lengths. 

Accuracy of 93% , on the never-before-seen test data set.  
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5.2.3 Model 3 - 8 Stations, One Long Fanout 

In this grid model, it was investigated how a neural network reacts when it comes to a parallel section. 

Therefore, two different configurations for the following grid topology were simulated: one grid model 

with a longer cable fanout and one with a shorter cable fanout. The following grid model consists of one 

long fanout of 10 km. The structure of the grid stations is the same as in the previous model. The subject 

of this investigation is how a neural network performs when it comes to parallel cables. The grid has the 

same measuring position and the same aim for the neural network to locate earth faults between the 

local grid stations at branch 1. 

 

Figure 5-10, earth fault simulation with eight stations on the affected feeder, including one long fanout 

5.2.3.1 Results 

The 2560 data samples were split into training data (70%), validation data (15%), and test data (15%). 

The training performances show a satisfying generalization. The training of the neural network stopped 

after eight epochs.  

 
Accuracy of 88%, on the never-before-seen test data set. 

Aim: to locate earth faults between stations. 
Measuring position 
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Figure 5-11, training and validation loss (left), training and validation accuracy (right) 

An accuracy of 88% was achieved for the test data set. The 88% of the test dataset are very close to 

the accuracy of the validation data, reached after eight epochs. It is a sign that the training was stopped 

in the right position.  

The visualization of the predicted probability distribution over the 100 test samples is shown in Figure 

5-12. At the first three cable sections, the neural network predicted, with high quality, the correct earth-

faulted sections. 

 

Figure 5-12, diagram for the probability distribution on 100 randomly chosen test samples 

When it comes to the parallel section, the neural network predicted most of the earth fault locations 

correctly but with a lower probability, especially at the transition points in the parallel section. At the end, 

when one cable is running out, the probability for the right predictions increased again. Even when the 

earth fault location is predicted wrongly, the neural network is not far away with its prediction from the 

actual earth fault section.  

5.2.3.2 Conclusion 

The results show that the parallel section (red circled area) has a negative influence on the neural 

network’s performance. 

5.2.4 Model 4 - 8 Stations, One Fanout 

The fourth model had the same structure as model 3, but with a shorter fanout of 2 km. It was 

investigated how a neural network performs if the parallel sections are more similar to each other. 

Further, it was investigated how the performance of the neural network changes when more data for the 

training process is used. Once, the earth fault simulations along the affected branch took place in 10% 

relative to the cable length and once with 2.5% steps to generate more data. The grid model was 

introduced in the subchapter 3.3.4.4. 
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Figure 5-13, earth fault simulation with eight stations on the affected feeder, including a fanout. 

5.2.4.1 Results with 10% steps 

The training performances in Figure 5-14 show a good generalization of the neural network. Both training 

and validation loss are declining in parallel, and training and validation accuracy are increasing in the 

same way. After 6 epochs, a minimum in loss and a maximum of accuracy was reached.  

 

For the never-before-seen test data set, an accuracy of 78% was achieved. The accuracy of the test set 

is 10% lower than with the previous grid model. 

Figure 5-15 shows the resulting probability distribution. Same as before, in the beginning, the neural 

network predicted the sections of the earth faults almost always 100% correctly. When it comes to the 

parallel cable, inaccuracy comes up. The neural network can hardly detect the right location. In the end, 

when one cable is running out, the probability for the right prediction increased again. Different from the 

Figure 5-14, training and validation loss (left), training and validation accuracy (right) 

Accuracy of 78%, on the never-before-seen test data set. 

Measuring position Aim: to locate earth faults between stations. 
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previous grid model, in the red circled area, the neural network was not really able to predict, even with 

a low probability, the correct earth fault location.  

 

Figure 5-15, diagram for the probability distribution on 100 randomly chosen test samples 

5.2.4.2 Results with a smaller step rate of 2.5% 

As described above, in this model, a more in-depth look was taken at what impact a lower step rate of 

2.5% has on the training and test results.  

Although the training results almost led to the same resulting values as before, the training performances 

show a better generalization. The loss and accuracy lines are running more parallel and are, therefore, 

less noise. It is an indicator of well-structured data sets.  

 

 

Figure 5-17 looks at the first look almost the same as Figure 5-15. On the first three cable sections, the 

predictions of the neural network on the correct earth fault locations were very high and a bit lower on 

the transition points. In the parallel section, some differences show up. Although the accuracy on the 

test data set with 78% was equal, the probability distributions of the predictions on the wrong fault 

sections are lower than in Figure 5-15 (red circled area). Thus, in case the fault location is predicted 

incorrectly, with the remaining probability on the other cable sections, it would still be possible to get an 

idea of where the fault might be located. When one cable was running out at the end of the parallel 

section, the probability of the correct predicted earth fault location increased again. 

Figure 5-16, training and validation loss (left), training and validation accuracy (right) 
 

Accuracy of 78% on the never-before-seen test data set. 
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Figure 5-17, diagram for the probability distribution on 100 randomly chosen test samples 

5.2.4.3 Conclusion 

With more data samples, the training performances showed a slightly better generalization. The 

visualization of the probabilities also showed a very small positive impact on the test data samples. It 

was easier to see where the fault is, even if incorrectly predicted. The 10% step rate was used for further 

investigations in order to be able to compare the various grid models. 

5.2.5 Model 5 - 8 stations including one fanout, and without a power infeed in station 

C 

In this model, it was examined what influence a single power infeed at station C has in comparison with 

the grid model in subchapter 5.2.4.1.  The only change to the previous grid model is the replacement of 

the power infeed at the local grid station C.  

 

Figure 5-18, earth fault simulation with eight stations on the affected feeder, including a fanout, and 
without a power infeed in station C 

5.2.5.1 Results 

The generated 2,560 data samples were split into 70% training data, 15% validation data, and 15% test 

data. The training performances show a proper generalization of the neural network. The lines are 
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Figure 5-19, training and validation loss (left), training and validation accuracy (right) 

running very parallel. The training was stopped after six epochs. On the never-before-seen test data, an 

accuracy of 78% was reached. That is the same amount of accuracy as before. 

The probability visualization in Figure 5-20 shows the same characteristics as the previous one in Figure 

5-17. The neural network correctly predicted the earth faults along the first three cables with a high 

probability. The red circled area looks nearly the same as before. Only the number of test samples 

differs in this area. In the end, the probability of the correctly predicted earth fault locations increased 

again. 

 

Figure 5-20, diagram for the probability distribution on 100 randomly chosen test samples 

The results of the test data set indicate a small influence of the power infeed at the station C, and look 

very close to the results in Figure 5-17 with the 2.5% steps. The quality of the predictions is a bit higher.  

5.2.5.2 Conclusion 

The removal of the single power infeed at station C has not changed the results of the neural network, 

since the results differ only slightly from each other, compared to the previous results in subchapter 

5.2.4.1. 

5.2.6 Model 6 - 8 Stations, one fanout, and no power infeeds  

In this subchapter, it was examined how the neural network’s behavior changes if no power infeeds at 

the affected branch are included, whereas the rest of the grid parameters remained the same.  

Accuracy of 78%, on the never-before-seen test data set.  
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Figure 5-21, earth fault simulation with eight stations on the affected feeder, including a fanout, and no 
power infeeds 

5.2.6.1 Results 

The training performances show a good generalization (Figure 5-22). The training was stopped after 

nine epochs. On the never-before-seen test dataset, an accuracy of 78% was reached. This is very 

close to the accuracy of the validation data at the end of the training process.  

 

Figure 5-22, training and validation loss (left), training and validation accuracy (right) 

Figure 5-23 shows the probability distributions of the neural network’s predictions. In comparison to 

Figure 5-20, incorrect predictions are predicted with a slightly lower probability.  

Accuracy of 78%, on the never-before-seen test data set. 
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Figure 5-23, diagram for the probability distribution on 100 randomly chosen test samples 

5.2.6.2 Conclusion 

Power infeeds have a negative impact on the performance of earth-fault-locating neural networks. 

5.2.7 Model 7 - 8 Station, and open circuit operation 

Next, it was examined how a neural network reacts if the affected branch is in open circuit operation, to 

find out what influences the loads and power infeeds have.  In comparison to the grid model in 

subchapter 5.2.4, all loads, and power infeeds were removed from the faulty branch. The simulation 

took place in the same way as before. The earth faults were simulated along the cables in 10% steps.  

 

Figure 5-24, Earth fault simulation with eight stations on the affected branch, including a fanout and 

open circuit 

5.2.7.1 Results 

The training performances indicate a good generalization. As before, the lines are increasing and 

decreasing in parallel. On the never-seen-before test data set, an accuracy of 81% was reached. That 

is about 3% higher than was reached with the grid model in 5.2.4.1. 
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Figure 5-25, training and validation loss (left), training and validation accuracy (right) 

Figure 5-26 shows the probability distribution. In the diagram, it can be seen that the probabilities are 

more evenly distributed between the parallel cables, than in subchapter 5.2.4.1. The main difference is 

that the incorrectly predicted fault locations are predicted with a lower probability.  

 

Figure 5-26, diagram for the probability distribution on 100 randomly chosen test samples 

5.2.7.2 Conclusion 

In general, the results indicate that loads and decentralized generation have a negative impact on earth-

fault-locating neural networks in parallel sections. 

5.2.8 Model 8 - 7 stations with an identical parallel section 

The last exemplary model consists of 7 stations along the affected branch. The stations of the parallel 

section are totally identical, including the same lengths of the cable connections. It also consists of the 

same characteristics for all local grid stations. The emphasis lies in this grid model on the identical 

parallel section. 

Accuracy of 81%, on the never-before-seen test data set. 
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Figure 5-27, earth fault simulation with seven stations on the affected feeder, with a total identically 
parallel section 

5.2.8.1 Results  

In Figure 5-28, in the left diagram, the training and validation loss is declining in parallel—indicative of a 

good generalization. The training stopped after 6 epochs at an optimum, so the neural network is not 

overfitting. On the right side, the training and validation accuracy is vice versa the loss diagram, rising 

in parallel. For the never-before-seen test data set, an accuracy of 73% was reached.  

 

Figure 5-28, training and validation loss (left), training and validation accuracy (right) 

Figure 5-29 shows the probability distribution of 100 randomly chosen test data samples. In the 

beginning, all earth faults were predicted correctly, which was the same for the second and third cables. 

On the transition points from one cable to another, the probability for the correct prediction decreased a 

little. When it comes to the parallel section, the neural network was not able to predict correctly. The 

probability of a correct prediction in this area is almost always around 50 to 50%.  

Accuracy of 73%, on the never-before-seen test data set. 
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Figure 5-29, diagram for the probability distribution on 100 randomly chosen test samples 

5.2.8.2 Conclusion 

The neural network had trouble predicting the earth-faulted sections. It was not possible for the neural 

network to identify the earth-faulted cable in the parallel section. This shows that the main inaccuracy 

and challenge for the earth-fault-locating neural network is coming from the parallel section. 
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6 Application of Earth-Fault-Locating Neural 

Networks 

In this chapter, a possible application of earth-locating neural networks is introduced. It is described 

what kind of training data is required and how such neural networks can be implemented in operating 

systems for distribution grids. 

6.1.1 Required Data 

The data used for developing neural networks plays an essential role. Neural networks are only as good 

as the data on which they are trained. If the task is to classify earth-faulted sections of different branches 

with different topologies, it is important to represent all types of earth faults and grid parameters in the 

training data. This includes: 

- Type of cables and/or overhead lines 

- Length of cables and/or overhead lines 

- Earth fault position 

- Kind of earth fault, including different transition impedances 

- The topology of the grid 

- The number of local grid stations with possible power  

- Line-to-ground capacities of the whole grid 

- Parameters of the arc-suppression coil, including compensation parameters. 

With the known parameters of the grid, it is possible to simulate earth faults in software like DIgSILENT 

PowerFactory, while varying all parameters which might influence earth faults in real operating systems. 

Through the parameter variation, large amounts of already labeled data are generated. The more that 

earth fault influencing possibilities are simulated, the higher the chance that the trained neural network 

can classify earth-faulted sections. For each branch, such training data is required. If an earth fault 

occurs, the parameters of which are not represented in the training data, the neural network still outputs 

some results. However, these results will mostly contain misleading information. In other words, the 

output will be useless.  

6.1.2 Earth-Fault-Locating Neural Network  

The inputs for an earth-fault-locating neural network are the voltages and currents measured in the 

substation at the outgoing branch. In Figure 6-1, a possible application is shown. The inputs are 

measured at the outgoing branch (red circled area). If an earth fault is detected, the neural network 

outputs the predicted section, including the possibility distribution for all sections. In a best-case 

scenario, the neural network would predict the correct section. 
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Figure 6-1, Earth fault locating neural network 

If the neural network predicted the wrong section through the possibility distribution, the area of fault 

could still be narrowed. In Figure 6-1, the neural network predicted the wrong section, marked in blue, 

between station B and C. The actual fault is located between station C and D.  

By the visualization of the probability distribution, it is possible to see where the area of fault is. The 

incorrectly predicted section got a probability of 40%. In contrast, the actual faulted section was 

predicted with 38%, just 2% less, as shown in Figure 6-2. The section between station C and BA got the 

remaining percent. With this information, a narrowed area of fault can become visible as the green area 

in Figure 6-1. In this scenario, all other sections are negligible because of their low probabilities. 

 

Figure 6-2, Output Neural Network 
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6.1.3 Application in operating medium voltage networks 

Since neural networks output predictions every time they are fed with input data, it has to be ensured 

that this input data contains the correct information. In other words, for an earth-fault-locating neural 

network, the input data needs to represent an earth fault. Otherwise, the neural network will probably 

predict some sections but without any reliability.  

It is required that earth-fault-locating neural networks are only fed with real earth faults. Otherwise, it 

would take a lot of effort to simulate and further represent all kinds of other possibilities in the training 

data. Here is where the classical earth-fault-detecting methods come in. Neural networks can be 

combined with classical earth-fault-detecting methods to increase the accuracy of such applications. In 

the following, a possible combination is introduced. 

6.1.3.1 Combined with the transient method 

A combination with the transient method is examined. The transient method with the qu-algorithm has 

the advantage to detect earth faults even with high transition impedances of a few kΩ. It can detect the 

earth-faulted branch with high accuracy but not locate the earth-faulted section. If an earth fault is 

detected, the measured data can be sent into the neural network to predict the earth-faulted section. 

The measured data can be stored by using a FIFO (first-in, first-out) method with the right size for the 

neural network. When an earth fault is detected by the transient method, the stored data can be 

immediately fed in the neural network to predict the earth fault location.  

Since common earth-fault relays only measure the displacement voltage and the zero-sequence-current 

of the monitored branch, additional inputs are required. The three phase-to-earth voltages and the three 

phase currents are needed as input. Below, the advantages and disadvantages of such a neural network 

implemented in an earth-fault relay are listed. 

 

Advantages: 

- Neural networks combined with proven approaches lower the risk of misleading results from 

the neural networks. 

- The neural network does not have to be trained on the earth-fault detection itself and other 

possibilities. 

- Reduces troubleshooting time 

- Outputs the earth-faulted sections immediately  

 

Disadvantages: 

- A high wiring effort since only the displacement voltage and the zero-sequence-current is 

measured in earth-fault-detecting relays 

- Exact parameters of the grid need to be known for the data generation 

- External visualization of the neural network’s results are re uired 
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7 Conclusion 

In the beginning, a neural network for fault classification was trained. The performances of the training 

process and the results of the test data show that the neural network was able to correctly classify 

different types of faults. All simulated faults were correctly predicted with a certainty of at least seventy-

five percent. 

After the classification task succeeded, the emphasis was on the earth-fault-locating task in 

compensated medium voltage cable networks, where grid models, which differed in complexity, were 

examined. 

First, earth faults were simulated along one cable section that consisted of four local grid stations, each 

connected with a 5 km cable. The results pointed out that a neural network can locate with very high 

accuracy earth faults between four stations connected with the same cable length.  

Almost the same results were achieved with a grid having nine stations connected with cables of different 

lengths. The earth-faulted cable sections were predicted with high accuracy, but the accuracy decreased 

slightly when the sections were further away from the substation.  

In the next steps, the limits of the earth-fault-locating with neural networks were investigated through 

more complex grid models. In subchapter 5.2.3, it was examined how a neural network performs when 

it comes to a parallel section. The grid model included one long fanout of 10 km. The results indicated 

that the neural network had trouble correctly predicting the fault when it occurred in the parallel section. 

But even when the earth fault location was predicted incorrectly, the neural network was not far away 

from the actual earth fault section. 

In subchapter 5.2.4, the fanout was reduced from 10 km to 2 km in order to see how a shorter fanout in 

the parallel section influences an earth-fault-locating neural network. In the parallel section, the results 

showed that the neural network was unable to identify the correct earth fault position at some points. On 

the same grid, four times more data was generated through a lower step rate of 2.5% of the simulated 

earth fault positions to investigate the influence of more samples. As a result, the accuracy of the test 

samples remained at 78%, but the visualization of the probability distribution indicated a slightly better 

quality. The probabilities were distributed in a way that made it easier to find out where the earth fault 

might be located. 

Using the same grid model as before, the impact of loads and power infeeds on the performance of 

earth-fault-locating neural networks was examined. In the first scenario, the single power infeed at the 

cable fanout station was removed. In the second, all power infeeds at the affected branch were removed. 

In the third scenario, all loads and power infeeds were removed to see what happens if the faulty branch 

is in open circuit operation.  

When the decentralized generation at the cable fanout station was removed, the results showed only 

very slight improvements. The accuracy of the test data set remained at 78%. The differences were in 

the probability distributions. Incorrect predictions were detected with a slightly lower probability. But in 
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sum, it was not possible to conclude that the removal of a single power infeed had a significant positive 

influence.  

In the second scenario, in which all power infeeds were removed, the probability distribution for correct 

and incorrect prediction improved slightly. However, the accuracy of the never-before-seen test data 

samples remained the same. Therefore, it was easier to find out where the earth fault might be located 

even if the prediction was incorrect. 

In open-circuit operation, the accuracy of the test data set increased by 3% to 81%, as did the quality of 

the neural network’s predictions. In the parallel section, the probability outputs were more evenly 

distributed between the parallel cables than before. Therefore, it was easier to get an idea where the 

fault might be located, even if it was predicted incorrectly. This shows that loads and decentralized 

generation have a negative impact on earth fault localization in parallel sections. 

In the last grid model, a grid model was simulated with a total identical parallel section to find out the 

impacts of a parallel section itself. In the identical parallel section, the neural network was only able to 

predict the correct earth fault location with a probability of around 50%. This demonstrated that most 

inaccuracies came from parallel running cables and showed that the more identical parallel sections 

are, the higher the inaccuracy of the predictions. 

In summary, these results show that neural networks can be very useful tools in the field of network 

protection. The results depend very much on the grid topologies. The less similar single sections are to 

each other, the higher the accuracy. The accuracy of the test data sets was at least in the range of 78 

to 100%. Almost all predictions with a probability greater than around 80% were predicted correctly. In 

cases where the earth-faulted sections were predicted incorrectly through the visualization of the 

probability distributions, it was still possible to indicate where the earth fault might be located. Combined 

with the transient method for earth fault detection, an earth-fault-locating neural network can help to 

identify an earth-faulted section immediately, which reduces troubleshooting times.  

In general, neural networks are only as good as their training data. If the input is different than the 

represented cases in the training data, the neural network will output a result, but the result will not 

include any meaningful information. In this master’s thesis, the neural networks were only trained on 

selected faults. For a real-world application, much more data, with all possible types of faults and 

parameters, would be needed. A combination of earth-fault-locating neural networks with already-

proven earth-fault-detection methods, like the transient method, can help to improve the reliability of 

such earth-fault-locating neural networks, as shown in chapter 0. 
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9 Appendix 

9.1 Program neural network for classification 

This is a code example showing a neural network for an earth-fault-locating task. 

The code is structured in the following way: 

-Data preparation 

-Neural network 

-Analyzing results 

The Keras library from Google is used with the framework TensorFlow. 

Import of needed libraries for reading files, data handling, and plotting. 

import pandas as pd  

import numpy as np 

import os 

import random 

import glob 

from os.path import normpath, basename 

import matplotlib.pyplot as plt 

 

Data preparation 

All CSV files are read out at the storage location. In the beginning, all files need to be randomly shuffled 

to avoid any misleading structures in the training process later on. In this, 2,560 files are loaded and 

randomly shuffled. 

path = r'C:\Users\Matthäus\Documents\02-Masterarbeit\06-DeepLearning\Sim_8 Stati

ons_ohne Einspeisung' 

all_files = glob.glob(path + "/*.csv") 

 

random.shuffle(all_files) 

print(len(all_files)) 

2560 

 

The data files are split into 15% for the validating task and 15% for testing, and the remaining 70% is 

used for training. 

validation_data_files = all_files[:384] 

test_data_files = all_files[384:768] 

training_data_files = all_files[768:] 
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training_data_files[8] 

'C:\\Users\\Matthäus\\Documents\\02-Masterarbeit\\06-DeepLearning\\Sim_8 Station

s_ohne Einspeisung\\2310000030335312.csv' 

 

The first two characters of each filename identify the fault and the earth-faulted section of the branch. 

For example, 24 stands for an earth fault in phase 2 in the fourth section of the branch. 

Since samples are labeled based on the names of their files, the labels and their contained data need 

to be separated into arrays. In the case of the training data files, the actual data is stored in the array 

traning_data, and the associated respective labels are stored in training_label. 

This is done using a for loop. The filenames are read out (line 11), as well as the data (lines 15 to 18), 

including some form changes. In the end of the for loop, the out readings are stacked above to each 

other. 

#Training Data 

training_data = [] 

df = [] 

training_label = [] 

number = [] 

 

for filename in training_data_files:    

    #label 

    name = np.array(os.path.basename(filename)) 

 

    number = name.astype('<U2')   

    number = number.astype('int32')  

     

    #features 

    df = pd.read_csv(filename, sep=";",decimal=".")    #get files    

    df = df.apply(lambda x: x.str.replace(',','.')) #replace comma by dot 

    df = np.array(df)   #convert in numpy 

    feature_voltage = df[1:,1:7]  #get voltages and currents    

    

    df= np.vstack([feature_voltage])  

    df = df.astype('float32')  

     

    training_data.append(df) 

    training_label.append(number) 
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The same is done for validation data and test data, as follows. 

validation_data = [] 

df1 = [] 

validation_label = [] 

number1 = [] 

 

for filename1 in validation_data_files:     

     

    df1 = pd.read_csv(filename1, sep=";",decimal=".")    #get files    

    df1 = df1.apply(lambda x: x.str.replace(',','.')) #replace comma by dot 

    df1 = np.array(df1)   #convert in numpy 

    feature_voltage = df1[1:,1:7]  #get voltages and currents 

     

    df1= np.vstack([feature_voltage]) 

    df1 = df1.astype('float32')  

    #label 

    name1 = np.array(os.path.basename(filename1)) 

    number1 = name1.astype('<U2')   

    number1 = number1.astype('int32')  

     

    validation_data.append(df1) 

    validation_label.append(number1) 

 

 

The test data does not need to be shuffled and can be sorted to make analyzations of the neural network 

easier later on. 

test_data_files = sorted(test_data_files) 

test_data = [] 

df2 = [] 

test_label = [] 

number2 = [] 

 

for filename2 in test_data_files:     

     

    df2 = pd.read_csv(filename2, sep=";",decimal=".")    #get files    

    df2 = df2.apply(lambda x: x.str.replace(',','.')) #replace comma by dot 

    df2 = np.array(df2)   #convert in numpy 

    feature_voltage = df2[1:,1:7]  #get voltages and currents  

     

    df2= np.vstack([feature_voltage])  

    df2 = df2.astype('float32')  

    #label 

    name2 = np.array(os.path.basename(filename2)) 

    number2 = name2.astype('<U2')   

    number2 = number2.astype('int32')  

     

    test_data.append(df2) 

    test_label.append(number2) 

 



Appendix 

86 

Next, the data and label sets are modified so that the data sets have the shape that is later needed for 

feeding the neural network. 

training_data = np.reshape(training_data, ((len(training_data)), 4002,6,1)) 

validation_data = np.reshape(validation_data, ((len(validation_data)), 4002,6,1)

) 

test_data = np.reshape(test_data, ((len(test_data)), 4002,6,1)) 

 

training_label = np.reshape(training_label, len(training_label)) 

validation_label = np.reshape(validation_label, len(validation_label)) 

test_label = np.reshape(test_label, len(test_label)) 

 

Import of needed libraries for building a neural network. 

from tensorflow.keras import models 

from tensorflow.keras import layers 

from keras.utils import to_categorical 

from keras import regularizers 

 

In the following, the labels are categorically encoded by one-hot encoding. Each label is embedded in 

an all-zero vector but with a one in the label index. 

train_labels = to_categorical(training_label) 

validation_labels = to_categorical(validation_label) 

test_labels = to_categorical(test_label) 

 

Neural network 

Now, the data preparation is complete, and the data is ready to be fed into a neural network. 

Since there is no rule regarding how the architecture of a neural network for specific data must look, it 

was discovered after many repetitions that the following model works well on this data. 

The layers are literally chained together. On the bottom layer (line 2), the input shape of the training 

data is required. In this case, one sample has a shape of (4002,6,1). 

The following layer automatically takes as input shape the output shape of the previous layer. 

The chosen architecture is a mix of convolutional and densely connected layers. 

Convolutional layers (also called convnets) as Conv2D take as input 3D shapes; that is why the data 

was reshaped in a previous step. The advantage of convnets is that once they have learned a specific 

pattern, that pattern can be recognized even in other places and in other samples. The learned patterns 

are invariant, which makes convnets very efficient in computer vision tasks. 
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Softmax is used as last-layer activation. Softmax outputs a probability distribution over all classes. The 

class with the highest probability is the neural network’s choice for specific input. 

model = models.Sequential() 

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(4002,6,1))) 

model.add(layers.MaxPooling2D((2, 2))) 

model.add(layers.Conv2D(32, (3, 2), activation='relu')) 

model.add(layers.MaxPooling2D((2, 1))) 

model.add(layers.Conv2D(64, (3, 1), activation='relu')) 

 

model.add(layers.Flatten()) 

model.add(layers.Dropout(0.3)) 

model.add(layers.Dense(32, kernel_regularizer=regularizers.l2(0.002), activation

='relu',input_shape=(None, 4002, 6))) 

model.add(layers.Dense(29, activation='softmax')) 

 

With this model architecture, the neural network consists of 2,055,549 parameters in total. 

model.summary() 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_3 (Conv2D)            (None, 4000, 4, 32)       320        

_________________________________________________________________ 

max_pooling2d_2 (MaxPooling2 (None, 2000, 2, 32)       0          

_________________________________________________________________ 

conv2d_4 (Conv2D)            (None, 1998, 1, 32)       6176       

_________________________________________________________________ 

max_pooling2d_3 (MaxPooling2 (None, 999, 1, 32)        0          

_________________________________________________________________ 

conv2d_5 (Conv2D)            (None, 997, 1, 64)        6208       

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 63808)             0          

_________________________________________________________________ 

dropout_1 (Dropout)          (None, 63808)             0          

_________________________________________________________________ 

dense_2 (Dense)              (None, 32)                2041888    

_________________________________________________________________ 

dense_3 (Dense)              (None, 29)                957        

================================================================= 

Total params: 2,055,549 

Trainable params: 2,055,549 

Non-trainable params: 0 

_________________________________________________________________ 

 

The compilation step defines three things: 

Optimizer: How the network updates itself while training. RMSprop is the most famous optimizing 

algorithm in deep learning. 

Loss: How the neural network measures its performance while training is defined in the loss function; 

‘categorical_crossentropy.’ 
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Metrics: Allows one to monitor the accuracy of the neural network during the training process. 

model.compile(optimizer ='rmsprop', 

             loss = 'categorical_crossentropy', 

             metrics=['accuracy']) 

 

Once the data preparation is complete and the architecture of the neural network has been built, training 

can begin. 

The training starts by calling the fit() method. It returns as object the history of the training process. 

Inputs are the training data with their corresponding labels (targets). In this case, the whole training data 

goes five times (5 epochs) through the training process in batches of 50 samples. After each epoch, the 

neural network is evaluated by the validation data set. 

history = model.fit(training_data,  

                    train_labels,  

                    epochs=5,  

                    batch_size=50, 

                    validation_data =(validation_data,validation_labels)) 

 

Train on 1792 samples, validate on 384 samples 

Epoch 1/5 

1792/1792 [==============================] - 6s 3ms/sample - loss: 2.7179 - acc: 

0.1373 - val_loss: 2.1854 - val_acc: 0.2500 

Epoch 2/5 

1792/1792 [==============================] - 4s 2ms/sample - loss: 1.6159 - acc: 

0.4554 - val_loss: 1.2003 - val_acc: 0.6198 

Epoch 3/5 

1792/1792 [==============================] - 4s 2ms/sample - loss: 0.9006 - acc: 

0.6836 - val_loss: 0.7853 - val_acc: 0.6458 

Epoch 4/5 

1792/1792 [==============================] - 4s 2ms/sample - loss: 0.6498 - acc: 

0.7260 - val_loss: 0.5874 - val_acc: 0.6927 

Epoch 5/5 

1792/1792 [==============================] - 4s 2ms/sample - loss: 0.5535 - acc: 

0.7573 - val_loss: 0.5158 - val_acc: 0.7786 
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Analyzing results  

The history object contains four entries: training loss, validation loss, training accuracy, and validations 

accuracy. 

Below, the training and validation loss are plotted side by side, as well as the training and validation 

accuracy. 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1,len(loss)+1) 

 

plt.plot(epochs, loss,'g',label = 'Training loss') 

plt.plot(epochs, val_loss, 'b', label = 'Validation loss') 

plt.title('Training and validation loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.savefig('Training-Validation-loss.svg') 

plt.show() 

 

 

acc = history.history['acc'] 

val_acc = history.history['val_acc'] 

 

plt.plot(epochs, acc,'g',label = 'Training acc') 

plt.plot(epochs, val_acc, 'b', label = 'Validation acc') 

plt.title('Training and validation accuracy') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.savefig('Training-Validation-accuracy.svg') 

plt.show() 
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With the following two plots, the training of the neural network is evaluated. At this point, it can be seen 

whether the architecture of the neural network needs to be modified (for example, adding layers) and 

be trained again, depending on underfitting or overfitting. 

Once the training results indicate a proper generalization, it is finally evaluated through the test data set, 

in which data was not seen by the neural network before. This is done as follows. 

model.evaluate(test_data,test_labels) 

384/384 [==============================] - 0s 903us/sample - loss: 0.5219 - acc: 0.7604 

[0.5219109567503134, 0.7604167] 

 

It is always recommended to save the neural network 

model.save('name of neural network') 

 

With predict(), all prediction from the test data can get stored in an array. 

predictions = model.predict(test_data) 

 

With argmax(), the class with the highest probability distribution can be displayed. For example, for the 

sample 100. 

np.argmax(predictions[100]) 

23 
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To receive the single distributions over the classes of a specific sample: 

for i in range(21,len(predictions[0])): 

    print(predictions[100][i]) 

0.0016532267 

0.13189343 

0.8635561 

0.0017368143 

0.0002396272 

7.1554955e-06 

7.252301e-06 

0.00024241534 

 

In the next step, a Hovmoller diagram is created to evaluate the samples, including the probability 

distributions over the classes. Before, only the predicted class with the highest probability was matched 

with the target. Below, the probability distribution is also shown. 

First, classes with the highest probabilities out of the results from the test data set are stored in the array 

named y_test_label. 

predictions = model.predict(test_data) 

y_test_label =[] 

for i in range(len(predictions)): 

    y_test = np.argmax(predictions[i]) 

    y_test_label.append(y_test) 

 

Second, all probability distributions are stored in a separate array named z_distribution. 

z_distribution = [] 

 

for j in range(0,384): 

    z_test = predictions[j][:29]         

    z_distribution.append(z_test) 

     

z_distribution = np.transpose(z_distribution) 

plt.figure(figsize=(30,5)) 

plt.scatter(range(0,384),test_label,marker='o',c='w',label = 'Real') 

plt.scatter(range(0,384),y_test_label,marker='x',c='r',label = 'Predicted') 

plt.imshow(z_distribution, interpolation = "nearest") 

 

plt.colorbar(plt.imshow(z_distribution, interpolation = "nearest"),fraction=0.00

35, pad=0.01) 

plt.xticks(np.arange(0, 100, step=5)) 

plt.yticks( [21,22,23,24,25,26,27,28],[ r'K_1-A', r'K_A-B', r'K_B-C', r'K_C-D', 

r'K_D-E', r'K_C-BA', r'K_BA-BB', r'K_BB-BC']) 

plt.axis( [0,344.5,20.5,28.5]) 

plt.legend() 

plt.savefig('Hovmuller diagram.svg') 

 

plt.show() 
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Since the diagram above does not really fit on the screen, a smaller diagram with 100 randomly chosen 

test samples is displayed below. 

random.shuffle(test_data_files) 

test_data_files1 = test_data_files[0:100] 

test_data_files1 = sorted(test_data_files1) 

 

test_data1 = [] 

df2 = [] 

test_label1 = [] 

number2 = [] 

 

for filename2 in test_data_files1:     

     

    df2 = pd.read_csv(filename2, sep=";",decimal=".")    #get files    

    df2 = df2.apply(lambda x: x.str.replace(',','.')) #replace comma by dot 

    df2 = np.array(df2)   #convert in numpy 

    feature_voltage = df2[1:,1:7]  #get voltages and currents  

     

    df2= np.vstack([feature_voltage])  

    df2 = df2.astype('float32')  

    #label 

    name2 = np.array(os.path.basename(filename2)) 

    number2 = name2.astype('<U2')   

    number2 = number2.astype('int32')  

     

    test_data1.append(df2) 

    test_label1.append(number2) 

 

test_data1 = np.reshape(test_data1, ((len(test_data1)), 4002,6,1)) 

test_data1 = test_data1.astype('float32') 

test_label1 = np.reshape(test_label1, len(test_label1)) 

 

predictions1 = model.predict(test_data1) 

y_test_label1 =[] 

for i in range(len(predictions1)): 

    y_test1 = np.argmax(predictions1[i]) 

    y_test_label1.append(y_test1) 
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z_axis1 = [] 

for j in range(0,100): 

    z_test1 = predictions1[j][:29]         

    z_axis1.append(z_test1) 

z_axis1 = np.transpose(z_axis1) 

 

plt.figure(figsize=(30,5)) 

plt.scatter(range(0,100),test_label1,marker='o',c='w',label = 'Real') 

plt.scatter(range(0,100),y_test_label1,marker='x',c='r',label = 'Predicted') 

plt.imshow(z_axis1, interpolation = "nearest") 

 

plt.colorbar(plt.imshow(z_axis1, interpolation = "nearest"),fraction=0.004, pad=

0.01) 

plt.xticks(np.arange(0, 100, step=5)) 

plt.yticks( [21,22,23,24,25,26,27,28],[ r'K_1-A', r'K_A-B', r'K_B-C', r'K_C-D', 

r'K_D-E', r'K_C-BA', r'K_BA-BB', r'K_BB-BC']) 

plt.axis( [0,99.5,20.5,28.5]) 

plt.xlabel('Test Samples') 

plt.ylabel('Caple Section') 

plt.legend() 

plt.savefig('Hovmuller diagram 100 samples.svg') 

 

plt.show() 

 

 


