

An innovative Concept for the complete and low-NOx Combustion of non-carbon Eco-fuels using a thermo-acousticallydriven, hydrogen-powered Pilot Stage

Nina Paulitsch

Combustion Bay One e.U., advanced combustion management

Graz, Austria

CfP 17. Symposium Energieinnovation TU Graz, Future of Energy – Innovationen für eine klimaneutrale Zukunft, 16. bis 18.02.2022

COMBUSTION BAY ONE

bluetifuel

Blue flames for low-emission combustion using non-carbon eco-fuels

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie Bundesministerium Bildung, Wissenschaft und Forschung

- Project Bluetifuel
- Siren E
- CFD Simulation
- Combustion Experiments
- Conclusion & Perspectives

- Project Bluetifuel
 - Vision and Strategy
- Siren E
- CFD Simulation
- Combustion Experiments
- Conclusion & Perspectives

Project Bluetifuel

bluetifuel

Blue flames for low-emission combustion using non-carbon eco-fuels

Idea:

Combine the benefits of an ultra-lean combustion in terms of NO_x -performance with precisely controlled, forced flame pulsation

Aim:

A safe and highly digitalised combustion technology for the complete and low- NO_x combustion of H_2 , NH_3 and H_2S

Project Bluetifuel - Vision

COMBUSTION BAY ONE

Project Bluetifuel - Strategy

- Project Bluetifuel
- Siren E
 - Specifications, Principle, Application
 - Method for detecting Eigenfrequencies of the Flame
- CFD Simulation
- Combustion Experiments
- Conclusion & Perspectives

Siren E - Specifications

Siren E - Specification

- Air mass flow rate up to 3kg/s under maximum pressure drop and 30% pulsation
- Noise levels up to 160 dB SPL

Siren E - Principle & Application

 Calibration of dynamic pressure transducers

COMBUSTION BAY ONE

- Acoustic characterisation of a combustor assembly
- Flow control and flame forcing

Siren E - Method for detecting Eigenfrequencies

Ideas Engineering Solutions

COMBUSTION BAY ONE

Siren E - Method for detecting Eigenfrequencies

- Project Bluetifuel
- Siren E
- CFD Simulation
 - The Model
 - Aerodynamic Study of the Pilot Stage
 - Stability and Flashback Study
- Combustion Experiments
- Conclusion & Perspectives

COMBUSTION BAY ONE

CFD Simulation – The Model

CFD Simulation – Aerodynamic Study

Solver: PisoFoam

COMBUSTION BAY ONE

- Fluid Air
 - Quantity adapted to a fictitious thermal power of 5 kW and equivalence ratio of 0.5
 - Density and Viscosity adapted to fictitious hydrogen content
- Strong recirculation zone
- Assumed flame position at reattachment point

Ideas Engineering Solutions

COMBUSTION BAY ONE

CFD Simulation – Stability and Flashback Study

Ideas Engineering Solutions

COMBUSTION BAY ONE

CFD Simulation – Stability and Flashback Study

- Project Bluetifuel
- Siren E
- CFD Simulation
- Combustion Experiments
 - Test Setup
 - Results
- Conclusion & Perspectives

COMBUSTION BAY ONE

Combustion Experiments – Test Setup

Ideas Engineering Solutions

COMBUSTION BAY ONE

Combustion Experiments – Results

Combustion Experiments – Results

「Nin都Pau肿tscipe En精 nov 2022

bluetifuel

Frequency [Hz]

550

600

Operating Point:

COMBUSTION BAY ONE

- H2 = 0.0266 g/s
- Air = 4.46 g/s

•
$$\phi$$
 = 0.2

Left: no pulsation **Right:** pulsation with 687Hz

Engineering Solutions

- Project Bluetifuel
- Siren E
- CFD Simulation
- Combustion Experiments
- Conclusion & Perspectives

Conclusion & Perspectives

- Pilot Stage
 - Operates safely under ultra-lean conditions ($\phi \le 0.5$)
 - Provides the desired auto-ignition temperature of the eco-fuels
 - Pulsation showed a significant effect on a detached, swirl-stabilised hydrogen flame
- Next step is to investigate in more detail what effect pulsation has on combustion stability and combustion quality
- Correlation between pulsation and combustion temperature, NO_x formation and combustion range extension

Conclusion & Perspectives

Emootion Probe

- Actually designed for the use with conventional fuels
- Good response to the hydrogen flame in open area
- Response of the probe needs to be investigated in more detail, as results can be distorted by thermal radiation from the combustor walls
- Next step is the characterisation of the probe for a hydrogen flame in combustor
- Adaption to the UV range, if necessary

Perspectives

- Further numerical computations will be performed with reacting flows including hydrogen and ammonia
- Initial combustion tests performed with premixed ammonia and hydrogen-powered pilot stage

Thank you for your attention! Danke für Ihre Aufmerksamkeit!

www.CBOne.at

Ideas

Engineering

Solutions

