

On the Future of Passenger Mobility and its GHG Emissions in Vienna: Scenarios for Different Types of Policies

Marina Siebenhofer, TU Wien 17.02.2022, EnInnov 2022

Agenda

- Mobility in Vienna
- Core objective
- State of the art
- Methods of approach
- Assumptions for the scenarios and results
- Conclusions

Mobility in Vienna

- Urban areas host about 50% of global population and generate 70% of GHG emissions
- Vienna -> reduction of GHG emissions until 2050 by 80% compared to emissions in 1990 (Smart City Wien Framework Strategy)
- Transport sector (43%), energy generation (20%), buildings (17%)
- Road Transportation contributed 72% of CO₂ emissions within transport sector
- Still fossil fueled, largely car-oriented

Mobility in Vienna

Core objective

Core objective:

- Analysis of scenarios for future development of energy use and resulting GHG emissions in transport in Vienna up to 2030
- Consideration of flow energy, flow emissions and embedded emissions of car/vehicle production
- Derivation of three scenarios (1) BAU-Scenario, (2) Public Transport Scenario, (3)
 BEV Scenario
 - conventional electricity mix, electricity from RES

Methods of approach:

 Excel model to estimate energy and CO2 flows and embodied energy and embodied CO2 and calculate corresponding emissions from manufacturing

State of the art

Data is from

- Alter-Motive Project from the EEG (2008-2011)
- ODYSSEE MURE (2016-2018)
- TransLoC (2018-2022)
- Statistic Austria

Peer-reviewed paper:

- Electric Mobility in Cities: The Case of Vienna (2021, Ajanovic et al.)
- How policy measures succeeded to promote electric mobility Worldwide review and outlook (2018, Rietmann et al.)
- Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review (2018, Cansino et al.)
- Future local passenger transport system scenarios and implications for policy and practice (2020, Enoch et al.)

Methodology

Business as Usual Scenario

Scenario Assumptions:

- Average growth rate PT of 2.6%/year in recent years to 2.6%/year up to 2030
- Average growth rate alternative-fueled cars of 3%/year up to 2030
- Private diesel use -> reduction of 4%/year

Public Transport Scenario

Scenario Assumptions:

- Average growth rate PT of 2.6%/year in recent years to 4%/year up to 2030
- average growth rate alternative-fueled cars of 3%/year up to 2030
- Private diesel use -> reduction of 4%/year

Battery Electric Vehicle Scenario

Scenario Assumptions:

- Average growth rate PT of 2.6% in recent years to 2.6% up to 2030
- average growth rate BEV of 3%/year in recent years to 4%/year up to 2030
- Private diesel use -> reduction of 4%/year

Development of CO2 Emissions in Scenarios

- Each scenario with a conventional electricity mix and electricity from RES
- Public scenario with electricity from RES → lowest CO2 emissions

Conclusion

- Political measures -> most significant impact on CO2 emissions in transport (reduction of pkm driven)
- Electrification of transport -> need to increase the electricity generation from RES
- Promotion of public transport
- Public Transport scenario with electricity from RES -> lowest total CO2 emissions (minus of 15% CO2 emissions compared to BAUscenario)

References

- A. Ajanovic, M. Siebenhofer, and R. Haas, "Electric Mobility in Cities: The Case of Vienna," Energies, vol. 14, no. 1, p. 217, 2021, doi: 10.3390/en14010217.
- J. Cansino, A. Sánchez-Braza, and T. Sanz-Díaz, "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," sustainability, vol. 10, no. 7, p. 2507, 2018, doi: 10.3390/su10072507.
- M. P. Enoch et al., "Future local passenger transport system scenarios and implications for policy and practice," Transport Policy, vol. 90, pp. 52–67, 2020, doi: 10.1016/j.tranpol.2020.02.009.
- N. Rietmann and T. Lieven, "How policy measures succeeded to promote electric mobility – Worldwide review and outlook," Journal of Cleaner Production, vol. 206, pp. 66–75, 2019, doi: 10.1016/j.jclepro.2018.09.121
- S. W. MA 18, "Smart City Wien Rahmenstrategie 2019-2050," [Online]. Available: https://www.wien.gv.at/stadtentwicklung/studien/pdf/b008551.pdf