



### Power-to-AI: Techno-economics of Aluminium as an Energy Carrier

Hüseyin Ersoy<sup>1</sup>, Manuel Baumann<sup>1</sup>, Linda Barelli<sup>2</sup>, Marcel Weil<sup>1,3</sup>, Stefano Passerini<sup>3</sup>

<sup>1</sup> Institute for Technology Assessment and System Analysis (ITAS), KIT, Karlsruhe, Germany

<sup>2</sup> University of Perugia (UNIPG), Perugia, Italy

<sup>3</sup> Helmholtz Institute UIm for Electrochemical Energy Storage (HIU), KIT, UIm Germany



#### www.kit.edu



# Agenda

- Introduction
- Energy Carriers & Comparison
- Integration of Aluminium as an alternative energy carrier
- Techno-economics
- Conclusion & Outlook



# Introduction: Demand on alternative energy carriers



Hydrogen is the most promising energy carrier, but...

- The green  $H_2$  will be 2 or even 3 times more expensive,
- H<sub>2</sub> storage requires very large volumes, and it is expensive,
- Europe will highly depend on the synthetic fuel imports from MENA region,
- Inefficiencies due to conversion (i.e, Ammonia path)
- Natural gas crisis that we are facing today, and increasing energy prices.



# **Energy Carriers**

### Hydrogen as main renewable energy carrier

- Lack of dedicated infrastructure
- Lack of value recognition
- Low growth rate of H<sub>2</sub> refueling stations
- Electrolyser capacity is only 135 MW (as November 2021, EU Target: 6 GW by 2024) [2]



storage tanks)



# And in the meanwhile...





Quelle: https://www.mcc-

Bearbeiten





# **Energy Densities Comparison**





• Conventional • Other • Metals



# Integration of Aluminium as an alternative





### System comparison [3]:

| Energy Carrier    | Conversion<br>Technology                                        | RTE                     | Vol.<br>Energy<br>Density |
|-------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
| AI                | Hybrid System in                                                | 35.6%                   | 23.5 kWh/L                |
| H <sub>2</sub>    | PEM Electrolyzer /<br>PEM Fuel Cell                             | 30%                     | 0.53 kWh/L                |
|                   | Reversible Solid-<br>oxide Cell                                 | 48%                     | 0.2 kWh/L                 |
| Methanol /<br>DME | SOE/SOFC                                                        | 36.5%<br>(26.5 with CC) | 5.5 kWh/L                 |
| Gasoline          | SOE/SOFC                                                        | 27%<br>(20% with CC)    | 8.8 kWh/L                 |
| LNG               | SOE/TSA<br>dehydration, H2<br>and CO2<br>membrane<br>separation |                         | 5.8 kWh/L                 |

Figure adapted from: [1]



# Al-based Business Case for Refueling Stations



### Proposed circular business case [4]:



### Technical aspects [4]

| Partial<br>Loads | Power  | Hydrogen  | η <sub>Al-to-Power</sub> |
|------------------|--------|-----------|--------------------------|
| 100%             | ~4 MW  | -         | 35.6%                    |
| 80%              | 3.1 MW | 28 kg/h   | 38.8%                    |
| 65%              | 2.6 MW | 46.8 kg/h | 40.7%                    |

# Al flow rate: 0.275 kg/s Specific investment: 4200–6200 €/kW





# **Estimated LCOH and LCOE Values (Base case)**



LCoE and LCoH estimations for the base case, i.e., 4000 FLHs and electricity price of  $50 \in MWhe^{-1}$ . (Low: lower end, Ref: reference, and High: higher end.) The H<sub>2</sub> kWh equivalent is estimated based on the higher heating value of 39.4 kWh kg<sup>-1</sup>. [4]



# **Scenarios**



As the aluminium cost is the most cost sensitive element in economics, following scenarios are developed [4]:

| Scenario       | Al Price [€/kg Al]   | Al₂O₃ Price<br>[€/kg Al eq.] | Energy Intensity<br>[kWh/kg Al] | Electricity<br>Price<br>[€/MWh] |
|----------------|----------------------|------------------------------|---------------------------------|---------------------------------|
| Scenario – I   | 1.44 – 1.86 (µ=1.65) | 0.52-0.93<br>(µ=0.67)        | 14.25                           | 50                              |
| Scenario – II  | 1.06 – 1.48 (µ=1.26) | 0.52-0.93<br>(µ=0.67)        | 11                              | 30                              |
| Scenario – III | 0.73 – 1.15 (µ=0.93) | 0.52-0.93<br>(µ=0.67)        | 11                              | 0                               |



# Levelized Cost of Hydrogen (LCOH)





Figure source: [4]



# Levelized Cost of Electricity (LCOE)





Figure source: [4]





# Comparison







# **Conclusion & Outlook**



- Overall carbon-neutrality of the proposed concept depends mainly on one step namely the "Hall-Héroult process". (i.e., inert anodes, wettable cathodes)
- Experimental demonstrations are needed.
- The levelized cost estimations imply high economic competitivity.
- Especially, on-site H<sub>2</sub> generation helps to avoide the burdens for costly H<sub>2</sub> storage and transmission.
- In the Power-to-Power context AI proves similar economic performance to bi-directional PEM H<sub>2</sub> conversion system (with cavern storage), which refers to the cheapest possible concept with a complex energy conversion chain.



# **Conclusion & Outlook**



For the Aluminium combustion:

- Development of a pilot system,
- Techno-economic evaluation of other business cases.

Further use of aluminium as an energy carrier:

Development and investigation of a mechanically rechargeable Al-air battery for within Power-to-X context for seasonal energy storage. (<u>KIT</u> <u>Future Fields Project Stage - II: ALU-STORE</u>)



## Acknowledgement



All authors acknowledge the support of the European Commission under the project Storage Research Infrastructure Eco-System (STORIES) (GAP-101036910).





# Thank you for your attention!





#### ITAS

Institute for Technology Analysis and System Analysis Karlstraße 11, Karlsruhe Germany http://www.itas.kit.edu/



### **Research for Sustainable Energy Technologies (RESET)**

Manuel Baumann manuel.baumann@kit.edu Tel: +49 721 608-23215 Hüseyin Ersoy hueseyin.ersoy2@kit.edu Tel: +49 721 608-26019





# Bibliography



[1] Irena, "Innovation landscape for a renewable-powered future: solutions to integrate variable renewables," 2019.

[2] P. Sterchele et al., "Paths to a Climate-neutral Energy System," Tech. rep. Freiburg, Germany: Fraunhofer Institute for Solar Energy Systems ISE, 2020.

[3] L. Barelli *et al.*, "Reactive Metals as Energy Storage and Carrier Media: Use of Aluminum for Power Generation in Fuel Cell-Based Power Plants," *Energy Technology*, vol. 8, no. 9, p. 2000233, 2020, doi: <u>https://doi.org/10.1002/ente.202000233</u>.

[4] H. Ersoy *et al.*, "Hybrid Energy Storage and Hydrogen Supply Based on Aluminum—a Multiservice Case for Electric Mobility and Energy Storage Services," *Advanced Materials Technologies*, vol. n/a, no. n/a, p. 2101400, Jan. 2022, doi: <u>10.1002/admt.202101400</u>.

