

Determining best values of operational parameters for reversible Solid Oxid Cell Systems

David Paczona Chair of energy networking technology Montanuniversität Leoben

17.02.2022

Contents

- The project FIRST
- Motivation for rSOC-Systems
- rSOC-System
 - Flowsheets
 - Modelling approach
 - Efficiency and scenarios
 - Parameters: Sensitivity and best choice of values
- Summary and Outlook

The project FIRST

- rSOC-System development
- Testing in Living-Lab
- Investigation of application scenarios
- Economical impact assessment

The project started in November 2019 and is running until October 2023.

Österreichische Forschungsförderungsgesellschaft

Motivation for rSOC-Systems

Renewables energy production (except biomass) is temporal volatile!

Motivation for rSOC-Systems

Renewables energy production (except biomass) is temporal volatile!

Research Questions:

How must the rSOC-System be designed to meet the requirements?

- Flowsheet for thermal integration
- Influence of operational Parameters

Conclusion II:

We need rSOC-System models to:

- Determine best values for operation parameters
- Simulate system behaviour in real applications

Conclusion:

We need an energy system that...

- ... can provide flexibility with required time constants
- ... is highly efficient

Possible Solution:

rSOC-System H₂-flowsheets

Further discussed flowsheets:

Two options for place of recirculation (A, B)

System Modelling approach

Component	Output	Input Parameter
System	H_2/H_2O mass flow	Fuel utilization, Stack current
	Recirculation mass flow	Recirculation rate
	Air mass flow (EC)	Air excess ratio (EC)
Stack	Stack characteristics	Temperature
Evaporator	Thermal power from change in enthalpy (5K superheating)	
Heat exchanger	Fluid temperatures	Pinch point ΔT , Heat exchanger constant
Condenser	Thermal power from change in enthalpy, condensation from saturation pressure and efficiency	Subcooling temperature
E-heater	Electric power (EC)	Temperature of gas
Fan	Electric power	Air excess ratio (EC), pressure drop, efficiency

System Efficiency and Scenarios

Scenarios of application:

Energy sector:

- No thermal interaction with environment
- Heat provided electrically

Industry sector scenario:

 Full thermal coupling – processes can provide waste heat and rSOC waste heat can be integrated

Sensitivity on system parameters

max

max

Observations:

- Increase in fuel utilization always beneficial
- Increase in recirculation rate beneficial for FC with rcond.
- Air excess ratio small
- T_{stack} small
- Small ΔT_{pinch} in EC and big in FC

Parameter	Min.	Max.
Stack temperature (T _{Stack}) [°C]	700	800
Recirculation rate (rr) [-]	0.5	5
Fuel utilization (fu) [-]	0.85	0.985
Fuel HX (ΔT _{Pinch}) [°C]	5	15
Air HX (EC / FC) (ΔT _{Pinch}) [°C]	5 / 70	15 / 90
Air excess ratio (EC only) (λ) [-]	0.5	1.5
Subcooling temp. (FC only) (ΔT _{sc}) [°C]	50	70

Best choice for system parameters

Observations:

- High recirculation allows high fuel utilization
- EC operation is much less effected by parameter changes than FC operation
- Thermal coupling in the industry scenario has big impact on the efficiency

$$\eta_{EC} = \frac{P_{fuel}}{P_{Stack} + P_{fan} + P_{e-heater} + Q_{evaporator}}$$
$$\eta_{FC} = \frac{P_{Stack}(+Ex_{air} + Ex_{fuel} + Ex_{Condenser1})}{P_{Fuel} + P_{fan}}$$

Greyed region is non accessible because of stack limitations!

Conclusions for the system design:

 The rSOC-System should be able to operate in FC mode with best values for operation parameters.

Summary

Review of Content:

- Motivation and Role in the energy system
- Flowsheets

Energy sector

77.97

 $\eta_{E,EC}$ [%]

2 3

rr[-]

 $\eta_{E,FC}[\%]$

2 3 4 5

rr[-]

1

1

4

68.4

5

EC CON

97.5

95.0

90.0

87.5

85.0

97.5

95.0

90.0

87.5

85.0

[% 92.5]기

FC cond

[% 92.5]미

Modelling approach and parameters

97.5

95.0

90.0

87.5

85.0

97.5

95.0

90.0

87.5

85.0

[% 92.5]nj

78.3

77.8

76.8

76.3

68

64

60

》 77.3 고

- Best values for parameters
 - T_{stack} small
 - Small ΔT_{pinch} in EC and big in FC

87,95

High recirculation rates and fuel utilization

Industry sector

 $\eta_{I,EC}[\%]$

88.1

87.8

87.5

87.2

- 86.9

- 75

· 71

67

63

86.90

1 2 3 4 5 6

rr[-]

 $\eta_{I,FC}[\%]$

2 3 4 5

rr[-]

1

76.0

Outlook: Application scenarios

Outlook: Application scenarios

Basics of rSOC

rSOC-System H₂-flowsheets

Improvements:

Electrolysis Cell (EC):

Enhanced internal heat recovery

Fuel Cell (FC):

High temperature heat extraction

