LOCOMOTION

Low-carbon society: An enhanced modelling tool for the transition to sustainability

WILIAM ENERGY MODULE

A SYSTEM DYNAMICS APPROACH TO ENERGY MODELLING IN A MULTIREGIONAL INTEGRATED ASSESSMENT MODEL

EnInnov, Session A4, Online, 17.2.2022

Lukas Eggler, Martin Baumann

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821105.

LOCOMOTION

Low-carbon society: An enhanced modelling tool for the transition to sustainability

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821105

"LOCOMOTION aims to enhance the existing MEDEAS IAMs to provide policy-makers and relevant other stakeholders with and open source, well-documented model to assess the feasibility, effectiveness, costs and impacts of different sustainability policy options"

The project

CONTACT:

Prof. Luis Javier Miguel González Nathalie Wergles Energy Economy and System Dynamics Group University of Valladolid

Universidad deValladolid

info@locomotion-h2020.eu

www.locomotion-h2020.eu

Duration: 1st June 2019 – 31th May 2023
 Coordinator: Universidad de Valladolid (Spain)
 Partners:

WILIAM – a brief overview **Energy Module** Detail: Energy Transformation chain Detail: Capacity Expansion Mechanism Q Detail: Scarcity Feedback **Outlook & Learnings**

WILIAM

A brief overview

Global plastics production, 1970 to 2015

Annual global polymer resin and fiber produc

WILIAM

(WIthin Limits Integrated Assessment Model)

- Based on predecessor model MEDEAS
- System dynamics methodology, implemented in VENSIM and translated to Python (OPEN SOURCE)
- Multiregional 9 regions + 27 EU countries (35 in total)
- Annual timesteps until 2050
- Modules currently in development
 - + **Economic module** with Input-Output of 62 economic sectors. Higher disaggregation of energy and mining sectors, enabling consistency of monetary and physical flows.
 - + **Demographic module** including climate change feedbacks on migration
 - + Environmental module covering climate, water, land use, agricultural production and diets
 - + **Minerals- & Materials module** accounting for the resource requirements our economy from mining to recycling
 - + The **Energy Module** determines the demand for primary energy and selects the required transformation technologies.

WILIAM alternative storylines

Green Growth

market tools and technological development

economic growth, absolute decoupling, global economic convergence; fast diffusion of low carbon technologies, sector coupling, efficiency improvements

Green Deal

Green Growth complemented with social policies

Features of Green Growth + social inequality reduction; public investments; welfare state; public ownership of energy utilities; job guarantee; public intervention

Post-growth

voluntary downscaling

relocalization, sharing economy, selforganization, commons, conviviality, voluntary behavioural changes; sufficiency; reducing material throughput

8

WILIAM ENERGY MODULE

Energy Module – design principles

- IEA Energy Balance Consistency
- Adequate representation of technologies that will likely play increasing role in sustainable scenarios (RES, Storage, CCS, DSM, H2...)
- Taking into account **biophysical limitations** via Feedback loops with other modules (e.g. Landuse for PV, biomass, material requirements, fuel scarcities and dynamic price signals)

Energy Module – simplified representation of most important interrelations; Source: AEA

WILIAMs Energy Transformation Chain

*Storage capacities & -losses are modelled in the intermittency Sub-Module ** Power2Heat and Power2Hydrogen

Endogenize "technology utilization allocation" (Illustrative, mock-data)

							-	2.0	00 4.0	JO 6.	00 8	8.00	10.00
	-						PRCTRA CHP gas fuels						
Calculation flow							PRCTRA CHP gas fuels CCS						
							PRCTRA CHP geothermal				EU	ROSTAT	
							PRCTRA CHP liquid fuels						
							PRCTRA CHP liquid fuels CSS						
							PRCTRA CHP solid fuels						
							PRCTRA CHP solid fuels CCS						
							PRCTRA CHP waste						
							PRCTRA CHP waste CCS						
	Main Flows	EUROSTAT	WILIAM				PRCTRA HP liquid fuels						
		2015 (FI)	2015 (EI)	Δ (EJ)	Δ (%)		PRCTRA HP liquid fuels CCS						
				l			PRCTRA HP solar						
	Final Energy	38.1	37.7	0.35	1%		PRCTRA HP solid fuels						
	Trees of a most is a Quitant	41.0	44.2	0.07	20/	Enormy	PRCTRA HP solid fuels CCS						
	Iransformation Output	41.9	41.2	0.67	2%	Lifelgy	PRCTRA HP waste						
	Transformation Input	54.6	52.0	2.55	5%	Transformation	PRCTRA HP waste CSS						
							PRCTRA PP gas fuels						
	Primary Energy	57.0	54.0	3.00	5%		PRCTRA PP gas fuels CCS						
						5% Error	PRCTRA PP geothermal						
							PRCTRA PP hydropower dammed						
							PRCTRA PP hydropower run of river						
							PRCTRA PP liquid fuels CCS						
							PRCTRA PP nuclear						
							PRCTRA PP oceanic	A CONTRACTOR OF					
							PRCTRA PP solar CSP						
							PRCTRA PP solar PV						
							PRCTRA PP solar urban PV						
							PRCTRA PP solid fuels						
							PRCTRA PP solid fuels CCS						
							PRCTRA PP waste						
							PRCTRA PP waste CCS						
							PRCTRA PP wind offshore						

TI by Technology (EU27, 2015, in EJ)

Comparison: EUROSTAT vs. WILIAM 2015

Capacity Expansion Mechanism – working principle

Spotlight: Energy & Materials Scarcity Feedback

WILIAM

Outlook

Outlook & Learnings

Outlook:

- Model Implementation is ongoing
- Next critical Step: Linking Modules
- Parallel: Scenario building
- Parallel: Scenario Explorer for Visualization of Results
- First Scenario Results: Summer '22
- Parallel: Translation of Model to Python

Learnings:

- Creating an IAM (scientific) software development...
- ...and requires the **Methods** of software developers.
- Face-to-Face workshops difficult to substitute

LOCOMOTION

Low-carbon society: An enhanced modelling tool for the transition to sustainability

0

info@locomotion-h2020.eu

lukas.eggler@energyagency.at

www.locomotion-h2020.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821105.

Bookmark our website, follow us on social media and subscribe to our newsletter.

LOCOMOTION

- Website: https://www.locomotion-h2020.eu/
- Newsletter: <u>https://www.locomotion-h2020.eu/news-events/newsletters/</u>
- **Twitter:** @LocomotionH2020
- Facebook: @locomotion.h2020
- LinkedIn: https://www.linkedin.com/company/locomotion-h2020/

LOCOMOTION is an EU-funded research project which models sustainable pathways towards a low-carbon society and economy.

#H2020

European Union *S* locomotion-h2020.eu III Joined September 2019

Edit profile