
und Rationelle Energieanwendung

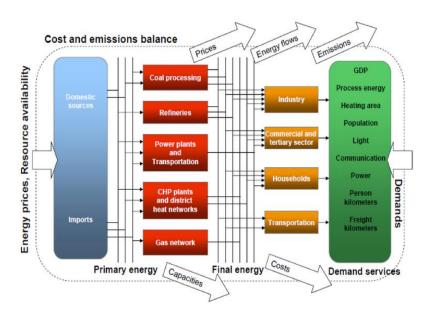
Agenda

- 1. Motivation und Ziel
- 2. Methodik
- 3. Ergebnisse
- 4. Diskussion und Ausblick

1. Motivation

- Das neue Klimaschutzgesetz definiert f
 ür 2030 Ziele f
 ür die einzelnen Sektoren in Deutschland
- Dabei sind insbesondere die Ziele für die Sektoren Verkehr und Wärme recht ambitioniert, die Geschwindigkeit der CO₂-Emissionsminderung muss im Vergleich zur vergangenen Dekade deutlich beschleunigt werden
- Über 2030 hinaus sind keine konkreten Ziele definiert, jedoch ist das Ziel der Klimaneutralität bis 2045 gesetzlich verankert
- Seit 2021: nationale CO₂-Bepreisung für die beiden Sektoren Verkehr und Gebäude in Deutschland eingeführt

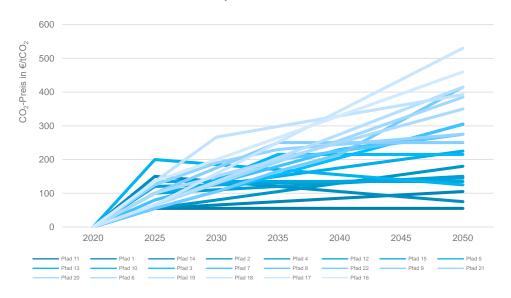
Quelle: https://www.bmwi.de/Redaktion/DE/Infografiken/Industrie/treibhausgasemissionen-deutschland-nach-sektoren.html


1. Motivation und Ziel

3 Forschungsfragen

- 1. Wie hoch müssen CO₂-Preise bzw. Preispfade sein, um das Ziel der Klimaneutralität in den Sektoren Verkehr und Gebäude zu erreichen?
- 2. Welchen Einfluss hat der zeitliche Verlauf der CO₂-Preispfade? Gibt es einen Vorteil für frühzeitig hohe CO₂-Preise?
- 3. Sind die Anforderungen an die CO₂-Bepreisung in beiden Sektoren ähnlich?

2. Methodik


Das Energiesystemmodell TIMES PanEU

- 30 Regionen (EU27+Norwegen, Schweiz und UK)
- Zeithorizont 2010-2050
- Vollständiger Wettbewerb der Technologien
- Abbildung aller relevanten Sektoren (Bereitstellung Primärenergie, Erzeugung von Strom und Wärme, Endenergiesektoren Industrie, GHD, Haushalte, Landwirtschaft und Verkehr
- Zielfunktion minimiert intertemporale Gesamtkosten des Energiesystem
- Lösung unter perfekter Voraussicht/Perfect Foresight

2. Methodik

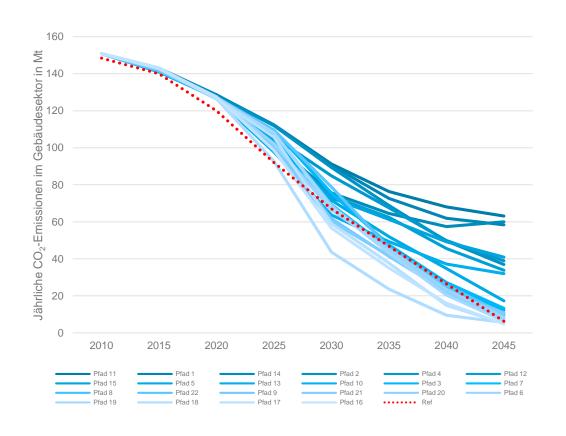
Untersuchte Preispfade

Vergleich der 22 Preispfade/Szenarien mit Einem kostenoptimalen Referenzszenario (Ref), das die Klimaschutzziele einhält

€/t CO ₂	2020	2025	2030	2035	2040	2045	2050	Durchschn itt
Pfad 11	0	55	55	55	55	55	55	55,0
Pfad 1	0	55	65	75	85	95	105	80,0
Pfad 14	0	150	135	120	105	90	75	112,5
Pfad 2	0	55	80	105	130	155	180	117,5
Pfad 4	0	100	110	120	130	140	150	125,0
Pfad 12	0	120	125	130	135	140	145	132,5
Pfad 15	0	135	135	135	135	135	135	135,0
Pfad 5	0	100	125	150	175	200	225	162,5
Pfad 13	0	200	185	170	155	140	125	162,5
Pfad 10	0	65	140	215	215	215	215	177,5
Pfad 3	0	55	105	155	205	255	305	180,0
Pfad 7	0	80	130	180	230	255	305	196,7
Pfad 8	0	100	150	200	225	250	275	200,0
Pfad 22	0	55	105	165	215	315	415	211,7
Pfad 9	0	100	175	250	250	250	250	212,5
Pfad 21	0	125	190	230	245	260	275	220,8
Pfad 20	0	65	129	193	257	321	385	225,0
Pfad 6	0	100	150	200	250	300	350	225,0
Pfad 19	0	65	135	205	275	345	415	240,0
Pfad 18	0	135	266,5	298	329,5	361	392,5	297,1
Pfad 17	0	65	158	251	344	437	530	297,5
Pfad 16	0	135	200	265	330	395	460	297,5

2. Methodik

Annahmen

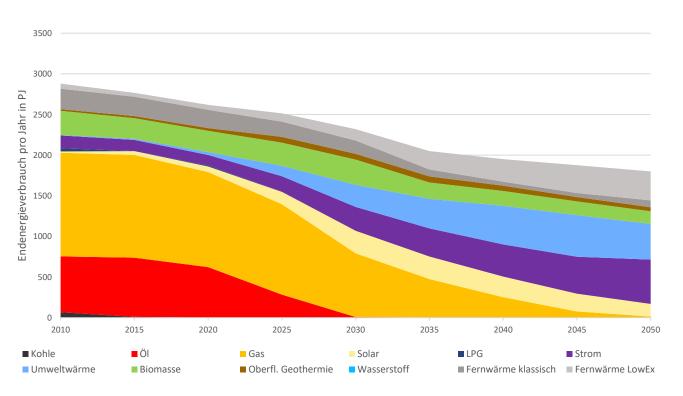

- Import von grünem Wasserstoff/synthetischen
 Kraftstoffen auf maximal 350 TWh begrenzt
- Biomasseeinsatz auf 410 TWh begrenzt
- Geologische CO₂-Speicherung begrenzt möglich (max. 50 Mt CO₂/Jahr), zusätzliche CO₂-Senken i.H.v. bis zu 60 Mt CO₂/Jahr
- Polt. Rahmenbedingungen werden als konstant angenommen (z.B. GEG)
- -> Annahmen gleichen stark dem Ariadne-Szenario "Technologiemixszenario"

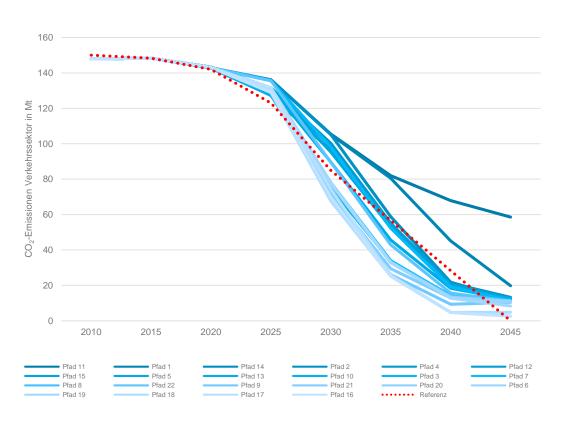
Ouollo

https://ariadneprojekt.de/publik on/deutschland-auf-dem-wegzur-klimaneutralitat-2045szenarienreport/

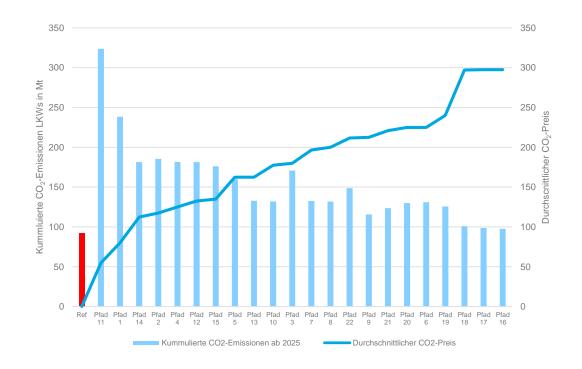
Gebäudesektor – CO₂-Emissionen im Jahresverlauf

- Kurzfristig (2025) nur sehr geringer Effekt
- Mittelfristig (2030-2040) schneiden sehr hohe CO₂-Preise sogar besser ab als das Referenzszenario
- Langfristig (2045) verringern nur 3
 Preispfade die CO₂-Emissionen unter das
 Niveau des Referenzlaufs
- Kumuliert (2025-2050) stoßen 4 der 22
 Szenarien weniger CO₂ aus


Gebäudesektor Endenergieverbrauch von Erdöl (links) und Erdgas (rechts)


- Durch die CO₂-Bepreisung entsteht ein Substitutionseffekt, Erdöl wird durch Erdgas verdrängt
- Um den Endenergieverbrauch von Erdgas signifikant zu senken sind sehr hohe CO₂-Preise notwendig

Gebäudesektor – Endenergieverbrauch Pfad 16 (höchster durchschnittlicher CO₂-Preis)


- Transformation hin zu
 Wärmepumpen, Fernwärme,
 Solarthermie und Biomasse
- Öl wird schon sehr früh aus dem System gedrängt
- Ein kleiner Rest Erdgas verbleibt auch noch 2045-2050 (Lebensdauer Heizung 18-20 Jahre)

Verkehr - CO₂-Emissionen im Jahresverlauf

- Kurzfristig (2025) nur sehr geringer Effekt
- Mittelfristig (2030-2040) schneiden viele
 CO₂-Preispfade sogar besser ab als das
 Referenzszenario
- Langfristig (2045) senkt keiner der
 Preispfade die CO₂-Emissionen unter das
 Niveau des Referenzlaufs
- Kumuliert (2025-2050) stoßen jedoch 12
 der 22 Szenarien weniger CO₂ aus

Verkehr - CO₂-Emissionen im Güterverkehr LKW

- PKWs dekarbonisieren auf Grund angenommener Kostenparität mit Verbrennern ab ca. 2030 schon bei vergleichsweise niedrigen CO₂-Preisen
- Für LKWs sind auch 2045 noch fossile und hybride Fahrzeuge Teil der Flotte, diese werden nur mit sehr hohen CO₂-Preisen unwirtschaftlich.

4. Fazit

- Sehr hohe CO₂-Preise sind notwendig, um das Ziel der Klimaneutralität zu erreichen
- Gerade kurz- und langfristig (tiefe Dekarbonisierung) werden die Ziele nur schwer über die CO₂-Bepreisung erreicht -> zusätzliche Politikinstrumente notwendig
- Mittelfristig werden die Ziele aus dem Referenzlauf jedoch teilweise sogar übererfüllt
- Beide Sektoren haben jeweils unterschiedliche, ideale Preisverläufe. Gerade im Verkehrssektor lohnt sich ein frühzeitig hoher CO₂-Preis. Im Gebäudesektor führen frühzeitig höhere Preise zu einer vergleichsweise höheren finanziellen Belastung, ohne die CO₂-Emissionen substantiell zu senken

Vielen Dank!

Alexander Burkhardt (M. Sc.)

E-Mail Alexander.Burkhardt@ier.uni-stuttgart.de

Telefon +49 (0) 711 685-87500

Fax +49 (0) 711 685-87500

Universität Stuttgart Systemanalytische Methoden und Wärmemarkt Heßbrühlstr. 49a 70565 Stuttgart