
17. Symposium Energieinnovation, 16.-18.02.2022, Graz/Austria  

MINIMUM COST FAST-CHARGING INFRASTRUCTURE PLANNING 

FOR ELECTRIC VEHICLES ON THE AUSTRIAN HIGH-LEVEL ROAD 

NETWORK 

Antonia GOLAB1*, Sebastian ZWICKL-BERNHARD1, Hans AUER1 

Motivation  

Given the ongoing transformation of the transportation sector towards electrification, the expansion of 

the current charging infrastructure is essential to meet the future charging demand of the battery electric 

vehicle (BEV) fleet. The lack of fast-charging infrastructure along highways and freeways is still an 

obstacle for long-distance travel with BEVs [1]. However, when it comes to the necessary expansion of 

fast-charging infrastructure, it is essential to plan for the long term on the one hand, while at the same 

time considering the impact of continuous improvements in charging and battery technologies on this 

infrastructure (by, e.g., accelerated charging and improvement in driving range). 

Most studies allocating charging infrastructure along highway networks follow location-allocation models 

[2]. Such approaches often neglect to estimate the sizing of individual charging stations or to incorporate 

limitations given by local grid constraints. Other highway charging station allocation studies follow 

iterative methods or develop methodologies requiring detailed data on individual trips, resulting in a 

restriction of optimality in the allocation and data-intensive methods [3].  

Methodology  

We propose the approach of a Mixed Inter Linear Programming (MILP) optimization model, which adopts 

graph attributes of a street network, by considering potential charging station sites and the network 

connections between these. For each node 𝑖, a certain demand 𝑑𝑖 exists. This demand can be covered 

locally (𝐸𝑖
𝑐ℎ𝑎𝑟𝑔𝑒𝑑

) or shifted to an adjacent node (𝐸𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

). Next to the potential coverage of local demand, 

there is also demand which has not been covered and shifted to node 𝑖 (𝐸𝑖
𝑖𝑛𝑝𝑢𝑡

). The values of these 

variables are in balance in each node: 

𝐸𝑖
𝑖𝑛𝑝𝑢𝑡

+ 𝑑𝑖 − 𝐸𝑖
𝑐ℎ𝑎𝑟𝑔𝑒𝑑

− 𝐸𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

= 0 (1) 

The energy shift from one node 𝑖 to an adjacent 𝑖 + 1 is expressed by the following constraint 𝐸𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

=

𝐸𝑖+1
𝑖𝑛𝑝𝑢𝑡

.Further, optimization variables 𝑋𝑖 ∈ {0, 1} and 𝑌𝑖 ∈ ℤ+ are introduced to imply whether a charging 

station is built and how many charging poles are installed at a node. These variables are optimized in 

regards to the minimization of infrastructure costs along all network segments ∑ ℎ for both driving 

directions ∑ 𝑘: 

min
𝑋𝑖ℎ,𝑌𝑖ℎ𝑘,𝐸

𝑖ℎ𝑘
𝑐ℎ𝑎𝑟𝑔𝑒𝑑

,𝐸
𝑖ℎ𝑘
𝑖𝑛𝑝𝑢𝑡

,𝐸
𝑖ℎ𝑘
𝑜𝑢𝑡𝑝𝑢𝑡

∑(𝑐𝑋𝑋𝑖ℎ + 

𝑖ℎ𝑘

𝑐𝑌𝑌𝑖ℎ𝑘) (2) 

Moreover, the optimization model includes constraints considering local grid limitations, a maximum 

distance between charging opportunities, and already existing fast-charging infrastructure. The spatially 

varying charging demand is estimated by calculating local traffic counts applying General Regression 

Neural Networks (GRNN) on real traffic count data [4].  

Overall, this top-down approach is easily applicable to different highway and motorway networks of 

varying locations and extend. It only requires geographic data representing the street network of interest, 

a set of potential sites for installing charging stations, and spatially distributed traffic count data input.  

Results 

This modeling framework is applied to the Austrian highway and motorway network, considering different 

future scenarios originating from the openEntrance project (https://openentrance.eu ). Within these 

                                                      
1 Institut für Energiesysteme und Elektrische Antriebe / Technische Universität Wien (TU-Wien), 
Energy Economics Group (EEG) 

https://openentrance.eu/


17. Symposium Energieinnovation, 16.-18.02.2022, Graz/Austria  

scenarios, the technological parameters of BEVs and the share of BEV cars in the car fleet, including 

the effects of modal shifts, are varied. In addition, the results of a sensitivity analysis based on the 

change in charging speed and battery capacity of BEVs and the simultaneous growth of the BEV 

passenger car fleet will show the direct impact of technological learning on the need for fast charging 

infrastructure.  

Figure 1 displays preliminary results indicating the needed expansion of the current fast-charging 

infrastructure along Austrian highways based on a BEV car share of 5% (approximate share for 2030, 

given the growth of this number during the last decade, https://www.beoe.at/statistik/). Next to the 

optimal allocation and sizing, results will encompass estimates of the electricity demand of BEV cars 

traveling on the Austrian high-level network. 

 

Figure 1: Preliminary results indicating the needed expansion of the fast-charging infrastructure 

(50kW) given a 5% BEV share in the car fleet. 
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