

Environmental information in CE marking What can we expect?

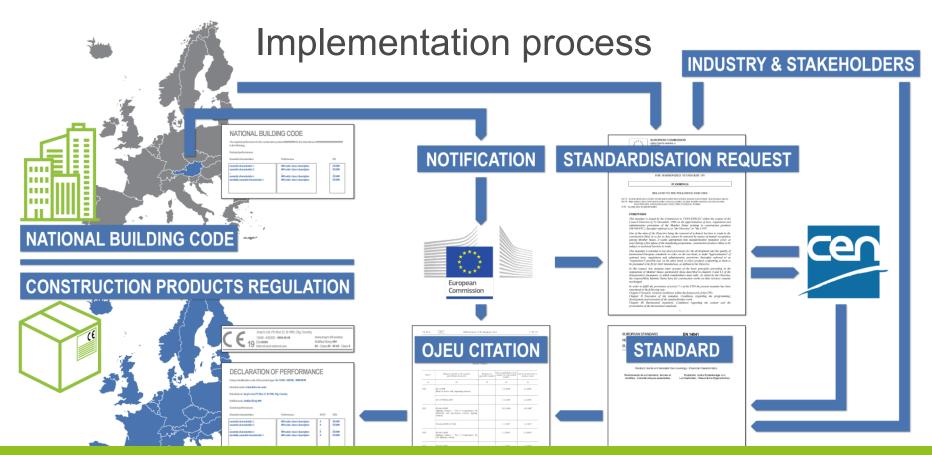
Oscar Nieto 12/09/2019

The performance of this construction was assessed in accordance with a harmonised technical specification.

Compulsory for the European market (hEN)

Performance only possible according to the harmonised system described in the harmonised technical specification

Member States <u>national rules must be</u> <u>aligned to the declaration in hEN</u> and cannot request additional information



European Commission requested the update of EN 15804 to their requirements – Single European approach

Harmonised standards to follow <u>amended EN 15804</u> for the assessment and declaration

Unique declaration of performance (DoP) at European level (no National approaches) including required <u>third party tasks</u>

Single market free of barriers to trade

Ongoing process for: reinforcing steel, solid fuel stoves, windows & doors, gypsum products and thermal insulation

CPR determines required third party tasks for the assessment in this case AVCP system 3 (ongoing discussion)

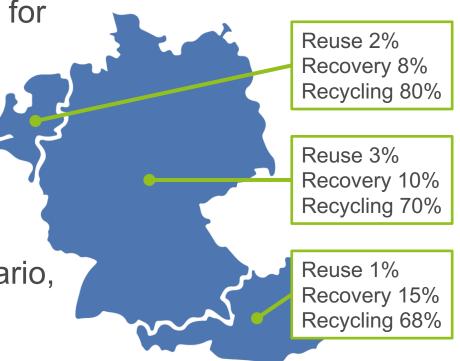
Bodies notified by Member States to perform third party tasks Single market for Notified Bodies (manufacturer's choice) AVCP system 3: Notified body to assess the performance Program operators current activities not aligned to the regulatory approach

Problem – Single declaration at EU level to fit National needs

National declaration is not possible within the CPR framework

Harmonised common rules (PCR) per product family:

- → Scenarios "parametric" declaration
- → Reference service life and functional/declared unit
- → Modelling details to be implemented


Alignment to Member States' requirements in an early stage

Single European declaration to fit National needs

- "Parametric" approach example for module C3:
- → C3 full reuse scenario
- \rightarrow C3 full recovery scenario
- \rightarrow C3 full recycling scenario

During the assessment of the building the most relevant scenario, or the combination of them, is selected

CPR provides options to the declaration

Declaration of NPD (no performance determined) for the full table unless

- \rightarrow there is a National requirement
- \rightarrow the information is declared in other document

Sharing and cascading allowed – applicable for "sectoral" EPD under a contractual agreement and for products manufactured from components

Other pending issues

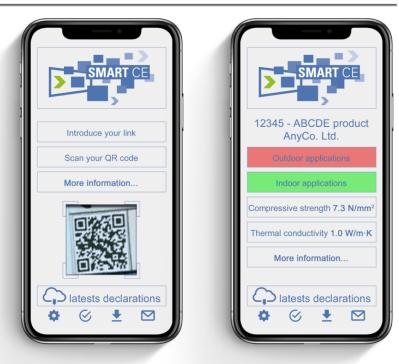
Core indicators											
GWP-total [kg CO2 eq.]	AV. 0 EAV	AV. A EAV	##.# E##	##.# E##		##. # E##	IN. I EN	NV. V EVN	AV. # EW	NI. I EN	NV. V EVN
GWP-fossil [kg CO2 eq.]	##. # E##	##. # E##	##, # E##	##, # E##		##, # E##	##. # E##	AN. O ENN	AM. IF EAN	AM. # EAN	AM. IF EAN
GWP-biogenic [kg CO2 eq.]	AN. A EAN	RV. Ø ERV	AN. A EAN	##. # E##		AV. A EAN	IN. I EN	M. # EW	M. # EW	AV. # EAN	NI. I EN
GWP-luluc [kg CO ₂ eq.]	##.# E##	##.# E##	##. # E##	##. # E##		##. # E##	##. # E##	##. # E##	##. # E##	##. # E##	##. # E##
ODP [kg CFC 11 eq.]	AN A FAN	AN A FAN	au a Eau	88.8 E04		au a Eas	AN A EVA	AN A EVA	AN A EAN	AN O FOR	AN A EAN
AP [mol H* eq.]	##. # E##	##. # E##	80. 8 580	80. 8 200		AN. A EAA	AN. O ENA	AN. & ENA	AN. # EAN	AN. O EAN	AN. O EAN
	88.8 288	88.8 284	84.4.7.64	80.0 200		84. 8 288	AU. 0 EUX	AU. 0 EUX	AL & FAX	AN. O EAN	A4. # E44
EP-freshwater [kg PO4 eq.]	##.# E##	84. 8 E84	84. 8 E84	80. 8 E89		89. 8 E88	NV. 0 ENV	NV. # ENN	NV. V EVV	NA. A EAN	NA. A ENN
EP-marine [kg N eq.]	89.9 E89	89. 8 E89	89. 8 E89	80.0 E89		89. 8 E88	89. 8 E88	##. # E##	MAL & FUTA	MR. IF EAM	10.0 E00 01.0 F00
EP-terrestrial [mol N eq.]											
POCP [kg NMVOC eq.]	##. # E##	88.8 688	AV. A EAV	RV. O ERV		AV. A EAA	IV. I EW	IN. I EW	NV. Ø ENV	NA. A ENV	NV. V EVN
ADP-minerals&metals [kg Sb eq.]	##.#E##	##.# E##	80. # E88	80. 8 E88		##. # E##	##. # E##	##. # E##	##. # E##	##. # E##	##.#E##
ADP-fossil [MJ, net calorific value]	##.# E##	##.# E##	80.0 284	80.0 204		88.8 288	##. # E##	RV. # E44	RV. # ERV	AV. # EVH	RF. F EFF
WDP [m ³ world eq. deprived]	##. # E##	88.8 688	##. # E##	##. # E##		##. # E##	60. 0 EVA	NV. Ø ENN	NV. Ø EVN	NV. # ENV	NV. V EVN
PM [Disease incidence]	IN. I EIN	AV. A EAV	IN. I EIN	IN. I EIN		IN. I EIN	IN. I EW	NI. I EW	NI. # EW	NI. I EN	NI. I EW
IR [kBq U 235 eq.]	##.# E##	##. # E##	88.8 588	88.8 688		IN. I ENI	IN. I EW	NV. 0 EVN	NV. Ø ENN	NV. # EW	NV. V EVN
ETP-fw [CTUe]	##.# E##	##.# E##	##.# E##	##. # E##		##. # E##	##. # E##	##. # E##	##. # E##	AN. O EAN	##. # E##
HTP-c [CTUh]	##.# E##	88.8288	88.8288	88.8288		##. # E##	##. # E##	##. # E##	NV. V EVN	AV. # EW	NR. 0 EWN
HTP-nc [CTUh]	##. # E##	##. # E##	##. # E##	##. # E##		NV. II ENN	IN. I ENI	NV. Ø ENN	M. # EM	NI. I EN	NV. V EVN
SOP	88.8 588	an a Fee	an a Fee	80. 8 E88		80. 8 E88	AN. O ENN	dat di Fata	dat di Fata	dat. di Fata	88. 8 E48
Indicators describing resource use	A1-A3	M	AS	81	-	87	C1	C2	C3	C4	D
Use of renewable primary energy	ning		142					UL.			-
excluding renewable primary energy											
resources used as raw materials IMJ, net	##. # E##	##. # E##	##. # E##	##. # E##		NV. 0 ENN	NV. Ø ENN	NV. Ø ENN	NV. Ø ENV	NV. # ENV	NV. V EW
calorific value)											
Use of renewable primary energy											
resources used as raw materials [MJ, net	##. # E##	84. 8 E84	##. # E##	##. # E##		##. # E##	##. # E##	AM. # EMA	AM. # EAN	AN. # EAN	AM. # EMM
calorific value]	P0. 9 2 89	P0. P 2.09	89.9 289	89.9 289		P0. 9 210	PD. 9 210	PD. 9 200	HU. 9 200	HP. P [] PR	P0. 9 299
Total use of renewable primary energy											
resources (primary energy and primary	##.# E##	##.# E##	##. # E##	88.8 288		##, # E##	##. # E##	##. # E##	##. # E##	AA. # EAX	##. # E##
energy resources used as raw materials) [MJ, net calorific value]											
Use of non-renewable primary energy											
excluding non-renewable primary energy	NV. 0 EW	##.# E##	##.# E##	##.# E##		NI. 0 EW	NU. U ENU	NI. I ENI	NI. I EN	NI. I EN	NI. I EN
resources used as raw materials [MJ, net											
calorific value]											
Use of non-renewable primary energy											
resources used as raw materials [MJ, net	##.# E##	##. # E##	88.8 688	80. 8 E88		##. # E##	##. # E##	##. # E##	NV. Ø EVN	NV. V EVN	NV. V EVN
calorific value]											
Total use of non-renewable primary											
energy resources (primary energy and	##.# E##	88.8 E88	88.8 E88	88.8 E88		88. 8 E88	##. # E##	88. 8 E88	##. # E##	##. # E##	##. # E##
primary energy resources used as raw											
materials) [MJ, net calorific value]											
Use of secondary material [kg]	AN. 0 EAN	80.0 280	80.0 280	80.8 688		AV. A EAN	AN, O ENN	AV. Ø EVN	AV. # EW	AV. # EVV	NV. Ø EW
Use of renewable secondary fuels [MJ, net	##.# E##	AN A DAY	AN. A EAN	88. 8 E88		AN. A EAN	AN. A EAN	ALL & EAL	ALL & EAN	AN. # EAN	ALL FEAT
calorific value]											
Use of non-renewable secondary fuels	88. 8 E88	88.8 E88	88. 8 E88	88. 8 E84		NU. N ENN	NU. O ENV	NU. O ENV	M. # EM	M. # EM	NI. I EN
[MJ, net calorific value]											
Net use of fresh water [m3]	##.# E##	88.8 684	##.# E##	88.8 684		##. # E##	##. # E##	##. # E##	##. # E##	AV. # EAX	##. # E##
describing waste categories											
Hazardous waste disposed [kg]	88.8 E88	80. 8 E89	##. # E##	##. # E##		80. 8 E88	88. 8 EW	AV. Ø EVA	NV. Ø ENN	AV. Ø EAN	AV. Ø EVN
Non-hazardous waste disposed [kg]	##.# E##	88.8 288	88.8288	88.8288		88.8588	##. # E##	AU. # EVA	AV. # EAN	AV. # EW	A4. # E44
Radioactive waste disposed [kg]	IN. I EIN	##.# E##	##. # E##	##.# E##		IN. I EIN	IN. I EW	NV. V ENV	NV. V EW	NV. # ENV	NV. V EW
Environmental information											
describing output flows											
Components for re-use [kg]	##.# E##	##.# E##	80, 8 E88	80, 8 E88		80. 8 E88	##, # E##	80. 8 E88	##. # E##	AND, IN EASY	88. 8 E88
Materials for recycling [kg]	##. # E##	##. # E##	80.0 E80	80.0 E00		NU. O ENI	N. I EN	N. FEM	M. # EM	NA. A EAN	N. FEM
Materials for energy recovery [kg]	88.8 288	88.8 288	88.8 688	88.8 688		88. 8 688	60. 0 E00	N. 0 EN	M. # EM	M. 0 EM	M. # EM
Exported energy [MJ per energy carrier]	##.# E##	##. # E##	##.# E##	\$\$, \$ E\$\$		80, 8 E88	##, # E##	##. # E##	##, # E##	##, # E##	##. # E##
Information describing the biogenic carbon		20.000	20.0.242	20.0202		24. 9 242	24/ 4 242	247.4.242	24.4.542	10.000	76.0.242
content at the factory gate											
Biogenic carbon content in product	##.# E##										
[kg C]		-									
Biogenic carbon content in accompanying	##.# E##										
packaging [kg C]											

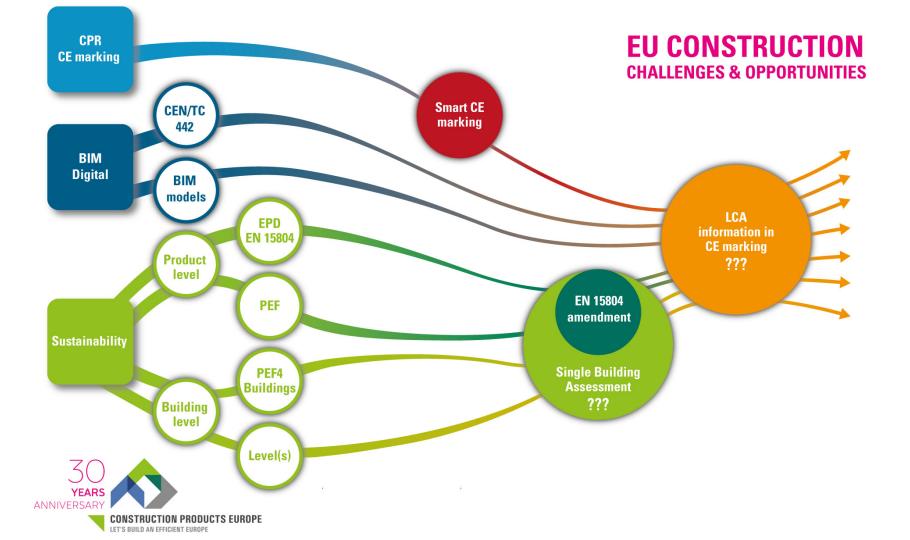
Some problems need to be solved

Declaration requires a unique valid background dataset

DoP to be revised when performance changes (e.g. energy mix)

Performance to be declared in CE marking (label in product, packaging or accompanying document)




Information delivery and use

EPD information is too complex and long for PDF documents

Data to be provided in a computer readable way to be used for building assessment

CPR allows this approach as it is being implemented in coordination with BIM developments – Smart CE®

Oscar Nieto Technical Director

Construction Products Europe AISBL Blv du Souverain 68, 1170 Brussels - Belgium t +32 (0)2 463 49 57 EU Transparency Register 48010783162-91 website | twitter | linkedin | youtube | blog | email

YEARS ANNIVERSARY CONSTRUCTION PRODUCTS EUROPE LET'S BUILD AN EFFICIENT EUROPE