

ZAVOD ZA SLOVENIAN GRADBENIŠTVO NATIONAL BUILDING SLOVENIJE AND CIVIL ENGINEERING INSTITUTE

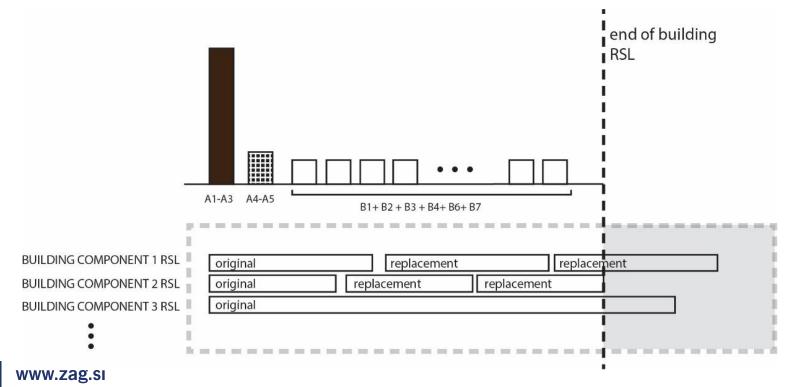
Roles of the reference service life (RSL) of buildings and the RSL of building components in the environmental impacts of buildings

T Potrč Obrecht ^{1,*}, R Kunič ², S Jordan ¹ and A Legat ¹

- 1 Slovenian National Building and Civil Engineering Institute
- 2 University of Ljubljana, Faculty of Civil and Geodetic Engineering
- * Correspondence: tajda.obrecht@zag.si

INTRODUCTION

- Buildings are complex entities and have long and unpredictable lifespans. LCA, therefore, while providing an indication of environmental impacts, includes inherent **uncertainties**.
- Dealing with uncertainty in LCA is important, because different studies on the same issue could yield different results (different parameters, scenarios, etc)
- Neglecting uncertainty can have a major impact on the understanding of the problem being analysed, skewing outcomes or misleading decisions based on the analyses


INTRODUCTION

- Uncertainty in LCA (Lloyd and Ries)
 - Parameter uncertainty (process inputs, environmental discharges, and technology characteristics)
 - Scenario uncertainty

 (functional units, valuation and weighting factors, service life, geographical scales, natural contexts, allocation procedures, waste-handling scenarios, etc.)
 - Model uncertainty (models for deriving emissions and characterization factors)

- RSL is defined as the period during which a building/component is in use
- RSL building \neq RSL component
- RSL can vary greatly depending on the source

4

The RSL of a component can be acquired from different sources :

- individual EPDs (cradle to gate, or cradle to grave);
- client requirements and current practices;
- product and component manufacturers' information;
- existing applicable standards such as ISO 15686
- conventional service life in a national context or within an LCA software package for buildings.

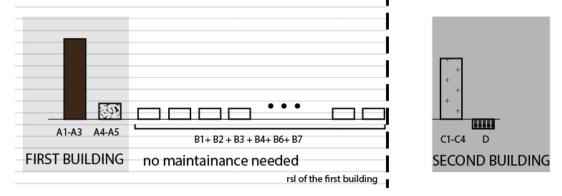
RSL regulations in European countries

Country	RSL Source for building components	Standard, legislation or part of the national assessment method	RSL of the building defined in relation to the main structural material	RSL of the building defined in relation to the building's use	
Austria	Nutzungsdauerkatalog baulicher Anlagen und Anlagenteile 2012 [10]	Legislation	no	no	
Belgium	Durées de vie dans MMG2017/TOTEM [11]	National assessment method	yes	no	
Czech	SBToolCZE [12]	National assessment method	yes	no	
Germany	Nutzungsdauern von Bauteilen für Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen (BNB) [13]	National assessment method	no	no	
Slovenia	Pravilnik o standardih vzdrževanja stanovanjskih stavb in stanovanj [14]	Legislation	yes	no	
Spain	Documento Básico SE Seguridad structural [15]	Legislation	no	no	
Switzerland	SIA 2032 [16]	Standard	no	no	

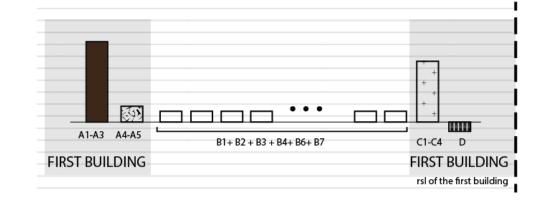
www.zag.si

RSL of building components of Slovenia, Austria and EOTA*

Building elements	Slovenia	Austria	ΕΟΤΑ
Foundations	90	60	100
External walls (above ground)	80	100	100
External door	50	30	25
Windows	50	30	25
Internal wall construction (supporting)	80	100	50
Partition wall (non-supporting)	50	30	25
Internal door	50	30	25
Floors (structural)	80	50	50
Ceilings	80	80	100
Roof structural construction	70	60	50
Stairs and ramps (structural)	50	70	50
Water system	40	N/D	25
Sewage system	40	N/D	50
Electrical system	40	N/D	25
Heating system (heat producer)	20	N/D	25
Heating system (heat distribution)	25	N/D	25
Ventilation system	20	N/D	25
External finishing coat	40	30	25
External thermal insulation (compact facade)	30	N/D	25
Roof cladding - inclined roof	30	N/D	25
Internal finishes (walls, floors)	30	30	10


www.zag.si

*Europena Organisation for Technical Assessment


COMPARISON OF ENVIRONMENTAL IMPACTS OF COMPONENTS CALCULATED WITH DIFFERENT RSL DATABASES

Two scenario are considered

• "REUSE" SCENARIO

COMPARISON OF ENVIRONMENTAL IMPACTS OF COMPONENTS CALCULATED WITH DIFFERENT RSL DATABASES

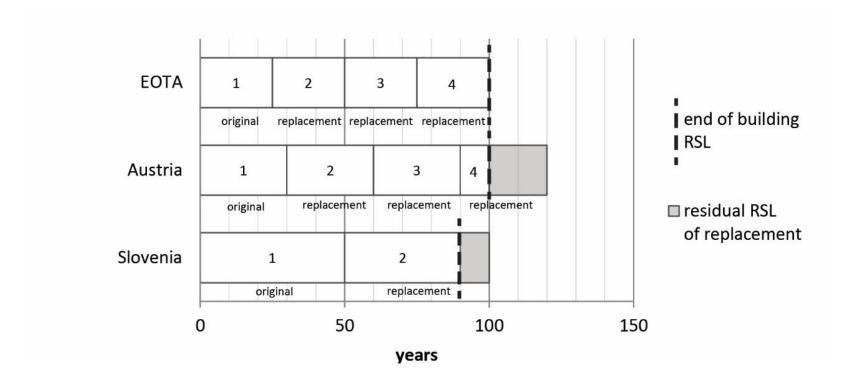
Two scenario are considered

- "REUSE" SCENARIO: **the internal wooden door**, which can be reused in a second building.
 - Environmental impacts of the replaced door can therefore be divided between the life cycles of two buildings.
- "END OF LIFE" SCENARIO: external finishing coat can not be further reused in a second building
 - environmental impacts of the finishing coat asigned to one building

COMPARISON OF ENVIRONMENTAL IMPACTS OF COMPONENTS CALCULATED WITH DIFFERENT RSL DATABASES

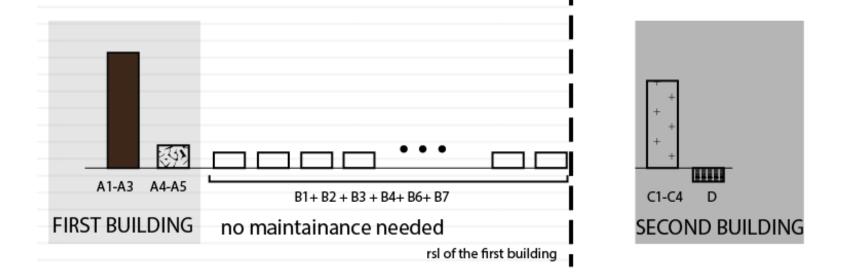
Oekobaudat data for the GWP impact category, used in this study

Internal wooden door (1pcs)


		Provision of raw materials	Transp ort	Production	Transport	Waste treatment	Elimination	Recycling potential
Indicator	Unit	A1	A2	A3	C2	C3	C4	D
GWP	kgCO(2)-Eq	-43,8	1,19	28	0,0792	101	2,6	-40,1

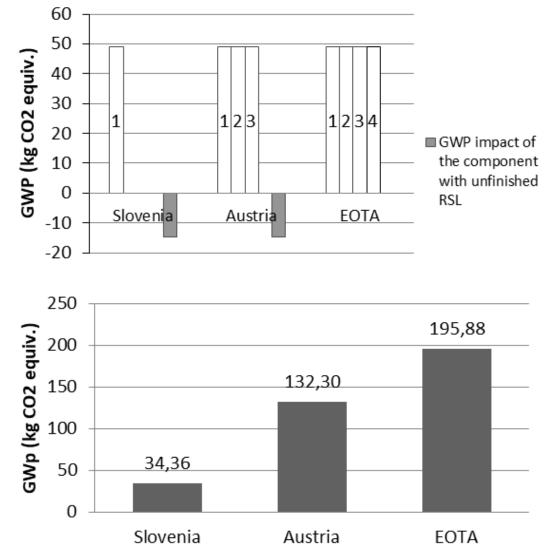
External finishing coat (1 kg)

Indicator	Unit	Production A1-A3	Transport A4	Installation A5	Elimination C4	Recycling potential D
GWP	kgCO(2)-Eq	1,22	0,199	0,0289	0,0112	-0,0193

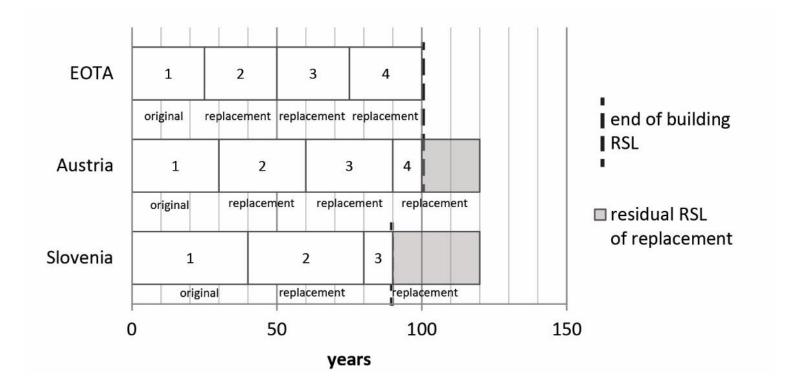

INTERNAL WOODEN DOOR

Internal door replacements in the RSL of the building according to the selected RSL databases

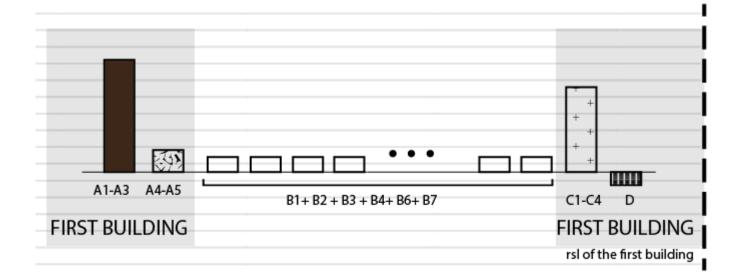
INTERNAL WOODEN DOOR


- Production phase is assigned to the first building
- "End of Life" phase is asigned o the second building where the door is reused
- No maintainance

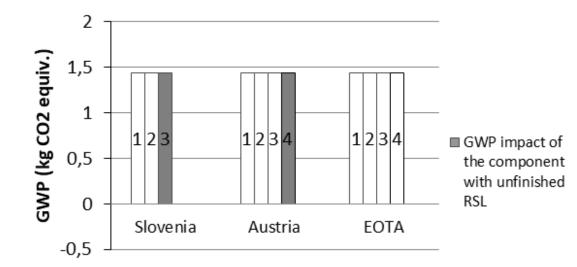
INTERNAL WOODEN DOOR


GWP emissions of each internal door(original + replacements) during the RSL of the building

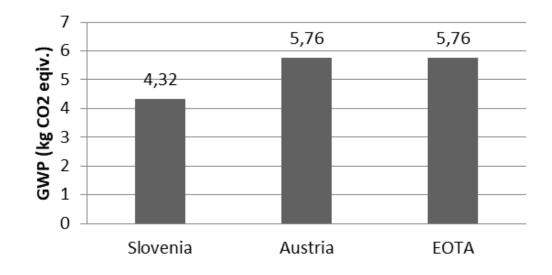
Total GWP emissions for each internal door(original + replacements) during the RSL of the building according the selected RSL databases


EXTERNAL FINISHING COAT

External finishing coat replacements in the RSL of the building according to the selected RSL databases


EXTERNAL FINISHING COAT

- Production phase is assigned to the first building
- "End of Life" phase is asigned o the first building since external finishing coat typically is not reused
- No maintainance



EXTERNAL FINISHING COAT

GWP emissions of each kg of finishing coat (original + replacements) during the RSL of the building

Total GWP emissions for each kg of finishing coat (original + replacements) during the RSL of the building according the selected RSL databases

CONCLUSIONS

- Reference service life (RSL) of a building and its components can have a significant influence on the results of the LCA analysis of a building
- For ensuring a reliable comparison between analyses it is extremely important that the **RSL data is clearly presented**
- **RSL databases should be harmonized.** RSL values of the individual materials, building components and buildings can be selected from many sources and are not completely comparable.

CONCLUSIONS

- The environmental impacts of the component strongly depend on the **reuse scenario**.
- This case study confirms that the scenarios for the reuse of individual components must also be methodologically consistent and clearly presented.
- Due to the differences in the selected European RSL databases and the predicted scenarios the results of the environmental impacts in a life cycle of a building can vary a lot

tajda.obrecht@zag.si