SBE19 GRAZ CONFERENCE

COMPARATIVE ANALYSIS OF AN EXISTING PUBLIC BUILDING MADE FROM NATURAL BUILDING MATERIALS AND REFERENCE BUILDINGS DESIGNED FROM COMMON BUILDING MATERIALS

BY PÉTER MEDGYASSZAY BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, DEPARTMENT OF CONSTRUCTION MATERIALS AND TECHNOLOGIES

Content

1: Research questions (role of natural building materials)

2: Method (building variations, LCA, LCC)

3: Results (LCA, LCC)

4: Conclusions

Research questions

Building and constructions [1]

36%

of global final energy use

39%

of energy-related CO₂ emission

Proposed new constructions[1]

By 2060 230 billion m² new building (every year 1 Japan)

RUSSIA Hokkaido NORTH KOREA Gerr Sear JAPAN South KOREA Shikoku Kyushu

3/17

1: R. Questions – 2: Method – 3: Results – 4: Conclusions

P. Medgyasszay: Comparative analysis... Graz, 12. 09. 2019.

Proposed change of construction and operation [2]				
	2008	2050		
Construction	15%	43%		
Operation	82%	50%		

What are the environmental benefits of using natural building materials?

The realised case study building

1: R. Questions – 2: Method – 3: Results – 4: Conclusions

P. Medgyasszay: Comparative analysis... Graz, 12. 09. 2019.

HUNGARY

Examined variations of case study building (both public and dwelling function)

	Realized building	Imagined building 2010 fulfils the energetic requirements from the year 2010	Imagined building 2019 fulfils the energetic requirements from the year 2019
Main constructions and HVAC system	 Pile foundation, Wall: wood frame, adobe brick and straw bale insulation U=0,15 Roof: 25 cm rock wool insulation U=0,15 Floor: 5 cm EPS, 15 cm XPS insulation U=0,33 Openings: wood frame, triple glazing U=0,8 H, HWS: wood chip boiler No air-conditioning 	 Pile foundation, Wall: brick wall U=0,45 Roof: 15 cm rock wool insulation U=0,24 Floor: 6 cm EPS, insulation U=0,49 Openings: double glazing U=1,4 H, HWS: gas boiler No air-conditioning 	 Pile foundation, Wall: brick wall with 10 cm EPS U=0,22 Roof: 25 cm rock wool insulation U=0,15 Floor: 12 cm EPS, insulation U=0,3 Openings: wood frame, triple glazing U=0,8 H, HWS: condensing gas boiler No air-conditioning

1: R. Questions – 2: Method – 3: Results – 4: Conclusions

5/17

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY

Operating parameters

Public building

- average air-change rate: 1,16 1/h
- internal heat gain: 7 W/m^2
- correction factor because of intermittent use: 0,4
- net specific energy demand of lighting: 6 kWh/m²yr
- reducing factor of lighting: 0,6
- Net specific energy demand of hot water supply: 7 kWh/m²yr.

- average air-change rate: 0,5 1/h
- internal heat gain: 5 W/m^2
- correction factor because of intermittent use: 0,9
- net specific energy demand of lighting: 0 kWh/m²yr,
- reducing factor of lighting: -
- Net specific energy demand of hot water supply: 30 kWh/m²yr.

LCA calculations for all 6 variations

Database manager

Own developed Excel based software

Data sources: Ecoinvent 2.0

Examined indicators:

- non-renewable cumulative energy demand (CED, n.r.) [MJ]
- global warming potential (GWP100a, CML 2001) [kg CO2-eq]
- acidification potential (AP, CML 2001) [kg SO2-eq]

Környe	ezetterhelés építés, felújítás során				
			Kummulatív energiaigény [MJ/év]	Felmelegedési potenciál [kg/év]	Savasodási potenciál [kg/év]
	Falazat		1394,53	82,72	0,51
	Lapostető		0,00	0,00	0,00
	Padlásfödém		6183,31	401,27	2.23
	MINDÖ S SZE SEN		31 251,71	2 219,16	17,72
Körny	ezetterhelés használat egy éve során				
		fogyasztás [kWh/a]	Kummulatív energiaigény [MJ/év]	Felmelegedési potenciál [kg/év]	Savasodási potenciál [kg/év]
	elektromos áram	3070,22	39 945,09	1 897,30	5,70
	csúcson kívüli elektromos áram	0,00			
	földgáz	0,00	0,00	0,00	0,00
	tüzelőolaj	0,00			
	szén	0,00			
	fűtőművi távfűtés	0,00			
	távfűtés kapcsolt energiatermeléssel	0,00			
	tűzifa, biomassza	11329,56	987,77	51,53	0,27
	megújuló energia	1427,70	297,87	15,01	1,14
	MINDÖSSZESEN	15827,48	41 230,74	1 963,84	7,11
Körny	ezetterhelés egy évre vetített értéke				
Realized	d 2010				2019.02.0
			Kummulatív	Felmelegedési	Savasodási
			energiaigény	potenciál	potenciál
			[MJ/év]	[kg/év]	[kg/év]
Létesítés	i, bontási életfázis környezetterhelése		31 251,71	2 219,16	17,72
Használa	ati életfázis környezetterhelése		41 230,74	1 963,84	7,11
Telies é	letciklus körnvezetterhelése		72 482.44	4 182.99	24.83

1: R. Questions – 2: Method – 3: Results – 4: Conclusions

P. Medgyasszay: Comparative analysis... Graz, 12. 09. 2019.

7/17

LCC calculations for 4 variations

Method: EN 15459

Main basic parameters:

- calculation period: 30 years,
- discount rate, excluding inflation 4%,
- long-term energy price escalation: 2% for electricity and wood and 2.8% for natural gas,
- 50 HUF/kWh for electricity,
- 8,3 HUF/ kWh for wood chips,
- 16 HUF/kWh for natural gas.
- 1: R. Questions 2: Method 3: Results 4: Conclusions

P. Medgyasszay: Comparative analysis... Graz, 12. 09. 2019.

8/17

PROJECT FINANCED FROM The NRDI FUND

MOMENTUM OF INNOVATION

Database manager

Own developed Excel based software

skeraleer konsegen - ei [ei tj				
	bekerülési költség	bekerülési költség	bekerülési költség	
	alsó érték	felső érték	közép érték	
	[eFt]	[eFt]	[eFt]	
Falazat	4016,320	6572,160	5294,240	
Lapostető	0,000	0,000	0,000	
Padlásfödém	9622,426	10777,208	10199,817	
MINDÖSSZESEN	90950,53485	117042,2413	103996,398	
rható üzemeltetlési költségek - C _{a,l} (j)				
		bruttó	várható éves	éves árnöveked
	fogyasztás	egységár	fogyasztás	mértéke
	[kWh/a]	[Ft/kWh]	[eFt/a]	[%]
elektromos áram	3070,220	50,000	153,511	2
csúcson kívüli elektromos áram	0,000	29,000	0,000	
földgáz	0,000	16,000	0,000	2,8
tüzelőolaj	0,000		0,000	2,8
szén	0,000		0,000	2
fűtőművi távfűtés	0,000		0,000	
távfűtés kapcsolt energiatermeléssel	0,000		0,000	
tűzifa, biomassza	11329,561	8,300	94,035	2
megújuló energia	1427,700	0,000	0,000	0
MINDÖSSZESEN	14399,781		247,546	
ljes életciklus alatti költségek				
Vizsgált életciklus - [a]	30			
Valós diszkont ráta - R _R	4			
Diszkont faktor - R _d (i)	0,3083			
Beruházási költség - C _I [eFt]	103 996,398			
Üzemeltetési költség - Σ C _a x R _R	5 683,470			
Felújítási költség [eFt]	27 002,165			
Maradványérték - V _{f.t} (j)	7 567,049			
Globális költség (közép érték)- C₀(ҭ) [eFt]	129 114,984			

Cumulative energy demand [MJ/yr]

Public building

Global warming potential [kg CO₂-eq/yr]

Public building

Acidification potential [kg SO₂-eq/yr]

Public building

Global cost (LCC) [1000 HUF]

Public building

- 1) Impact of the use of natural building materials on the wall structure is positive and significant.
- 2) Due to the higher energy requirements the environmental impact of constructions is increasing.

	Realized building	Imagined building 2010 fulfils the energetic requirements from the year 2010	Imagined building 2019 fulfils the energetic requirements from the year 2019
CED [MJ/yr]	1394,53	4089,75	5766,36
GWP [kg CO ₂ -eq/yr]	82,72	314,41	413,65
AP [kg SO ₂ -eq/yr]	0,51	1,21	1,53

1: R. Questions – 2: Method – 3: Results – 4: Conclusions P. Medgyasszay: Comparative analysis... Graz, 12. 09. 2019. MÚEGYETEM 1782 13/17 INAITONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY PROJECT FINANCED FROM THE NRDI FUND MOMENTUM OF INNOVATION 3) The environmental impact of wall structures is not significant compared to the environmental impact of the other structures and mechanical systems.

	Realized building	Imagined building 2010 fulfils the energetic requirements from the year 2010	Imagined building 2019 fulfils the energetic requirements from the year 2019	
CED [MJ/yr]	31251,71	30146,88	36240,33	
GWP [kg CO ₂ -eq/yr]	2219,16	2055,34	2440,71	
AP [kg SO ₂ -eq/yr]	17,72	15,84	17,43	

4) In the case study, the greatest environmental benefit is not connected to the construction phase but to the operation phase.

5) From the point of view of LCC analyses the phase of construction phase, while from the point of view of LCA analysis the operation phase is dominant at the common residential building.

6) At present, the savings in environmental load by using natural materials is not significant in Hungary, but it is expected to become an increasingly important area in the future.

References

- [1] International Energy Agency. (2017). Global Status Report 2017. Global Status Report 2017
- [2] Lawrence, M. (2016). Reducing the Environmental Impact of Construction by Using Renewable Materials. 3(3), 163–174. https://doi.org/10.7569/JRM.2015.634105

Thank you for your attention!

Péter Medgyasszay

www.em.bme.hu

