

UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO Department of Civil Engineering, Architecture and Georresources

Optimizing the economic, environmental and technical performance of concrete mixes with fly ash and recycled concrete aggregates

Rawaz Kurda, José Dinis Silvestre, Jorge de Brito

CERIS, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal

> Presented by: José Dinis Silvestre

|--|

Outline
1. Introduction
2. Mix compositions and categories
3. Difficulties regarding optimization
4. Application of CONCRE <i>Top</i>

5. Conclusions

1. Introduction

11/09/2019

2. Mix compositions and categories

Concrete mixes composition

Mixes ^a	Fine RA (%)	Coarse RA (%)	FA (%)
M1; M1-SP	0	0	0
M2; M2-SP	100	0	0
M3; M3-SP	50	0	30
M4; M4-SP	0	0	60
M5; M5-SP	100	0	60
M6; M6-SP	0	100	0
M7; M7-SP	100	100	0
M8; M8-SP	50	100	30
M9; M9-SP	0	100	60
M10; M10-SP	100	100	60

^a M and M-SP are concrete mixes without and with SP (1% of binder's weight)

Standards and details for each selected category

Categories	Abbreviation	Units	Test specimen size	Standard
Compressive strength	f _{cm.cube}	MPa	150x150 mm	(EN 12390-3, 2009)
Modulus of elasticity	E _{cm}	GPa	Ø150x300 mm	(<u>LNEC E 397, 1993</u>)
Carbonation	K _{ac}	mm	Ø150x40 mm	(LNEC E 391, 1993)
Chloride ion penetration	D _{nssm}	m²/s	Ø150x50 mm	(LNEC E463, 2004; Nordtest BUILD NT, 1999)
Cost	-	Euros	Cubic meter	-
Global warming potential	GWP	kg CO₂ eq	Cubic meter	LCA methodology (<u>EN 15804, 2012; ISO 14040, 2006</u>)
Non-renewable primary energy resources	PE-NRe	MJ	Cubic meter	LCA methodology (<u>EN 15804, 2012</u> ; <u>ISO 14040, 2006</u>)

3. Difficulties regarding optimization

Decision-influencing issues

Examples:

Optimize construction materials based in characteristics measured in different **units.** For example, strength and durability of concrete.

The **weight** of each category may not be the same and changes according to its application.

The highest ranked construction material (best one) may not necessarily be an **optimal** choice for the selected application.

11/09/2019

Optimization Process:

Specification of the application (step i)

- \Box Select the application \rightarrow the optimization process will be different according to the application
- ❑ Study the application → specify the required characteristics of concrete (if available) in order to consider them as threshold values and select the optimal mix.
- □ If the specific characteristics of concrete for the selected application are uncertain → the following scenarios were proposed with different threshold values, in order to cover most of the construction cases (the majority of concrete applications):
- Business as usual;
- Green \rightarrow sustainable residential houses;
- Strength;
- Service life;
- Cost.

11/09/2019

Optimization Process:

Selection of main categories (step ii)

11/09/2019

Ranking of concrete mixes according to their performance

crete mixes	(un) dmi	fcm, cube	(MPa)	Ecm	(GPa)	D _{nssm}	(x10 ⁻¹² m ² /s)	bonation " mm year ^{0.5})	GWP g CO2 eq)	PE-NRe (MJ)	st (€/m³)
Cone	Sh	28 days	365 days	28 days	365 days	28 days	365 days	Car kac" ((kg	Н	C
M1	7.3	55.8	61.3	43.8	47	12.6	7.9	11.3	361.6	1949.5	79.9
M1-SP	8.5	73.5	83	51.4	55.7	6.4	3.9	1.6	364	1983.2	90.1
M2	8.1	45	51.5	34.7	39	16.2	9.8	26.9	360	1936.2	76.7
M2-SP	8.8	54.1	63.7	39.9	42.6	9.4	5.5	7.8	362.5	1970.8	86.7
M3	8.3	36.4	57.2	38.3	46.3	8.9	3	37.7	267.9	1572.2	71
M3-SP	8.9	60.4	79	43.9	50.2	4.2	1.0	4.2	270.3	1605.6	81.1
M4	7.2	24	42.2	38	46.1	11.2	3.1	61.58	175.9	1209.7	65.3
M4-SP	8.1	42.4	58	40.7	47.7	5.4	1.1	59.84	178.7	1248.1	75.5
M5	8.5	21.5	40	32.3	41.4	13.2	3.3	66.4	174.2	1194.5	62.2
M5-SP	8	37.1	57	34.4	42	6.6	1.3	51.83	176.6	1228.5	72.1
M6	7.6	51.9	59.2	37.1	41.4	14	8.5	15.35	331.1	1528.6	74.6
M6-SP	8.8	63	73	43.5	47.7	7.6	4.6	1.5	331.8	1538.2	84.5
M7	8.1	42	50.2	28	31.4	18.1	10.6	30.3	330.3	1525.4	71.6
M7-SP	8.9	49	60.6	33.9	35.8	10.6	6.1	9	331	1534.9	81.2
M8	8.8	33	56.6	32.5	40	9.3	3.2	42.3	237.6	1153.9	65.8
M8-SP	8.7	53.8	74	38.3	44	4.6	1.1	12.2	238.3	1163.4	75.5
M9	8.6	23	41	33	41.1	11.9	3.2	59.8	145	783.1	59.9
M9-SP	8.8	38	59	38.3	43.6	5.9	1.2	57.1	145.7	792.6	69.8
M10	7.3	21	38	26.9	35.3	14.2	3.6	66.3	144.2	779.1	57
M10-SP	8.9	32.3	54	30.1	35.5	7.3	1.4	44	144.8	788.7	66.6

Ranking and standardization of the concrete mixes

$f_{\rm cm}$ (28 da	ys)	f _{em} (365 d	ays)	E _{cm} (28 d	ays)	E _{cm} (365 d	lays)	D _{nssm} (28 days)		D _{nssm} (36: days)	5	Carbonat	ion	GWP		PE-NRe		Cost	
M1-SP	1.00	M1-SP	1.00	M1-SP	1.00	M1-SP	1.00	M3-SP	1.00	M3-SP	1.00	M6-SP	1.00	M10	1.00	M10	1.00	M10	1.00
M6-SP	0.80	M3-SP	0.91	M3-SP	0.69	M3-SP	0.77	M8-SP	0.97	M4-SP	0.99	M1-SP	1.00	M10-SP	1.00	M9	1.00	M9	0.91
M3-SP	0.75	M8-SP	0.80	M1	0.69	M4-SP	0.67	M4-SP	0.91	M8-SP	0.99	M3-SP	0.96	M9	1.00	M10-SP	0.99	M5	0.84
M1	0.66	M6-SP	0.78	M6-SP	0.68	M6-SP	0.67	M9-SP	0.88	M9-SP	0.98	M2-SP	0.90	M9-SP	0.99	M9-SP	0.99	M4	0.75
M2-SP	0.63	M2-SP	0.57	M4-SP	0.56	M1	0.64	M1-SP	0.84	M5-SP	0.97	M7-SP	0.88	M5	0.86	M8	0.69	M8	0.73
M8-SP	0.62	M1	0.52	M2-SP	0.53	M3	0.61	M5-SP	0.83	M10-SP	0.96	M1	0.85	M4	0.86	M8-SP	0.68	M10-SP	0.71
M6	0.59	M7-SP	0.50	M3	0.47	M4	0.60	M10-SP	0.78	M3	0.79	M8-SP	0.84	M5-SP	0.85	M5	0.66	M9-SP	0.61
M7-SP	0.53	M6	0.47	M8-SP	0.47	M8-SP	0.52	M6-SP	0.76	M4	0.78	M6	0.79	M4-SP	0.84	M4	0.64	M3	0.58
M2	0.46	M9-SP	0.47	M9-SP	0.47	M9-SP	0.50	M3	0.66	M8	0.77	M 2	0.61	M8	0.58	M5-SP	0.63	M7	0.56
M4-SP	0.41	M4-SP	0.44	M4	0.45	M2-SP	0.46	M8	0.63	M9	0.77	M7	0.56	M8-SP	0.57	M4-SP	0.61	M5-SP	0.54
M7	0.40	M3	0.43	M6	0.42	M5-SP	0.44	M2-SP	0.63	M5	0.76	M3	0.44	M3	0.44	M7	0.38	M6	0.47
M9-SP	0.32	M5-SP	0.42	M2	0.32	M5	0.41	M7-SP	0.54	M10	0.73	M8	0.37	M3-SP	0.43	M6	0.38	M4-SP	0.44
M5-SP	0.31	M8	0.41	M5-SP	0.31	M6	0.41	M4	0.50	M1-SP	0.70	M10-SP	0.35	M7	0.15	M7-SP	0.37	M8-SP	0.44
M3	0.29	M10-SP	0.36	M7-SP	0.29	M9	0.40	M9	0.45	M6-SP	0.63	M5-SP	0.22	M7-SP	0.15	M6-SP	0.37	M2	0.40
M8	0.23	M2	0.30	M9	0.25	M8	0.35	M1	0.40	M2-SP	0.53	M9-SP	0.14	M6	0.15	M3	0.34	M1	0.31
M10-SP	0.22	M7	0.27	M8	0.23	M2	0.31	M5	0.35	M7-SP	0.47	M9	0.10	M6-SP	0.15	M3-SP	0.31	M3-SP	0.27
M4	0.06	M4	0.09	M5	0.22	M7-SP	0.18	M6	0.29	M1	0.28	M4-SP	0.10	M2	0.02	M2	0.04	M7-SP	0.27
M9	0.04	M9	0.07	M10-SP	0.13	M10-SP	0.17	M10	0.28	M6	0.22	M4	0.07	M1	0.01	M1	0.03	M6-SP	0.17
M5	0.01	M5	0.04	M7	0.04	M10	0.16	M2	0.14	M2	0.08	M10	0.00	M2-SP	0.01	M2-SP	0.01	M2-SP	0.10
M10	0.00	M10	0.00	M10	0.00	M7	0.00	M7	0.00	M7	0.00	M5	0.00	M1-SP	0.00	M1-SP	0.00	M1-SP	0.00

11/09/2019

Optimization Process: Scenarios and CONCRE**Top** factor (step v)

- Ranking mixes

- One step closer to find the optimum mix

Weight of	each	scenario
-----------	------	----------

Categories	Factors	Scenarios				
categories	Tactors	Business as usual	Green	Strength	Service life	Cost
Mechanical behaviour	S	40%	10%	<u>50%</u>	10%	30%
Compressive strength	S1	80%	80%	80%	80%	80%
s1 at early age	S1e	100%	0%	0%	0%	0%
s1 at longer age	S1I	0%	100%	100%	100%	100%
Modulus of elasticity	S2	20%	20%	20%	20%	20%
s2 at early age	S2e	100%	0%	0%	0%	0%
s2 at longer age	S2l	0%	100%	100%	100%	100%
Durability	D	20%	10%	10%	<u>50%</u>	10%
Chloride	d1	33%	33%	33%	33%	33%
d1 at early age	d1e	100%	0%	0%	0%	0%
d1 at longer age	d1l	0%	100%	100%	100%	100%
Carbonation	d2	67%	67%	67%	67%	67%
LCA	L	0%	50%	10%	10%	10%
GWP	1	0%	50%	50%	50%	50%
PE-NRe	12	0%	50%	50%	50%	50%
Cost	С	40%	30%	30%	30%	50%

Optimization of the concrete mixes according to green scenarios without considering threshold values

3. Process optimization (CONCRE*Top*)

Optimization Process:

Threshold values (step vi)

Specific boundaries for the characteristics of structural concrete according to different scenarios

Scenarios	f _{ck} /f _{ck,cube} - E _{cm}	Carbonation resistance ^a	Chloride resistance	GWP	PE-NRe	Cost
Business as usual	C20/23 - 30	Fair	Moderate	High	High	High
Green	C20/23 - 30	Fair	Moderate	Low	Low	High
	- C35/45- 3 4	-Fai r	- Moderate	-⊢+i g h ·	- High	
Service life	C20/23 - 30	Good	High	High	High	-
Cost	C20/23 - 30	Fair	Moderate	High	High	Medium

a The carbonation resistance can be neglected in marine concrete (concrete under water) or be fair for structures close to the sea

The ranked mixes based on the CONCRE**Top** are compared with the threshold values to decide the applicability of mixes for each selected application.

Optimizing concrete mixes for sustainable residential house in the "GREEN" scenario

Ranked mixes	CONCRE <i>Top</i>	Threshold	Applicable	Reasons
	factor			
M6-SP F 0% C 100% FA 0% SP 1%	0.41	Strength = 45/55 - 36 Carbonation R. = Very good Chloride R. = Very high GWP = Low PE-NRe = Low Cost = Very high	NO	The cost is very high.
M1-SP	0.28	Strength = $55/67 - 38$	NO	The cost is very high.
		Carbonation K. – Very good Chloride R. = Very high GWP = Medium PE-NRe = Low Cost = Very high		For the green scenario, the GWP is expected to be lower than medium.
M1	0.26	Strength = 40/50 - 35 Carbonation R. = Good Chloride R. = Very high GWP = Medium PE-NRe = Low Cost = High	NO	For the green scenario, the GWP is expected to be lower than medium.
M2-SP	0.24	Strength = 35/45 - 34 Carbonation R. = Very good Chloride R. = High GWP = medium PE-NRe = Low Cost = Very high	NO	The cost is very high. For the green scenario, the GWP is expected to be lower than medium.
M2	0.21	Strength = 30/37 - 33 Carbonation R. = Good Chloride R. = Moderate GWP = Medium PE-NRe = Low Cost = High	NO	For the green scenario, the GWP is expected to be lower than medium.

11/09/2019

Optimization Process:

Final decision (step vii)

Ranked mixes	CONCRETop factor	Threshold values (§6.1)	Applicable	Reasons
Name of mix	(0 - 1)	fck/fck,cube - Ecm	Yes or NO	According to threshold values
		Carbonation resistance		
(mix composition)		Chloride resistance		
		GWP		
		PE-NRe		
		Cost		

Applicable concrete mixes for the sustainable residential house according to the "Green" scenario

Mixes	M10-SP	M9	M10	M9-SP	M8-SP	M5-SP	M5	M4	M8	M4-SP	M3-SP	M3	M6	M7-SP	M7
Fine RA (%)	100	0	100	0	50	100	100	0	50	0	50	50	0	100	100
Coarse RA (%)	100	100	100	100	100	0	0	0	100	0	0	0	100	100	100
FA (%)	60	60	60	60	30	60	60	60	30	60	30	30	0	0	0
SP (%)	1	0	0	1	1	1	0	0	0	1	1	0	0	1	0
CONCRE <i>Top</i> factor	0.78	0.76	0.75	0.75	0.65	0.62	0.61	0.61	0.6	0.58	0.52	0.47	0.39	0.38	0.34

5. Conclusions

Conclusions

- □ The optimum concrete mixes may not be easily chosen by comparing the performance of concrete in each dimension (e.g. quality, cost and EI). In practical terms, for each selected application, it relies on the CONCRE*Top* factor and threshold values;
- Mixes produced with high incorporation ratios of FA and RCA (e.g. M9 and M10 with and without SP) are not anticipated to be an optimal choice according to their individual characteristics, but their characteristics comply with the threshold values and their CONCRE *Top* factors are the highest;
- □ The optimal mix (e.g. for sustainable house) may not necessarily be the one with the highest result in the demanded characteristic (e.g. EI). In practical terms, it is chosen by the combined performance in all the characteristics;
- □ Broadly speaking, in this method, the mixes are judged based on their performance on all characteristics, not in just one characteristic (dimension).

For more information:

- Kurda, R., de Brito, J., Silvestre, J. D. (2019). CONCRETop A multi-criteria decision method for concrete optimization. *Environmental Impact Assessment Review*, 74, pp. 73-85.
- Kurda, R., de Brito, J., Silvestre, J. D. (2019). CONCRETop method: Optimization of concrete with various incorporation ratios of fly ash and recycled aggregates in terms of quality performance and life-cycle cost and environmental impacts. *Journal of Cleaner Production*, 226, pp. 642-657.
- Kurda, R., Silvestre, J. D., de Brito, J. (2018). Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. *Resources, Conservation & Recycling*, 139, pp. 407-417.
- Kurad, R., Silvestre, J. D., de Brito, J., Ahmed, H. (2017). Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. *Journal of Cleaner Production*, 162, pp. 485-502.

UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO Department of Civil Engineering, Architecture and Georresources

Optimizing the economic, environmental and technical performance of concrete mixes with fly ash and recycled concrete aggregates

Rawaz Kurda, José Dinis Silvestre, Jorge de Brito

CERIS, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal

> Presented by: José Dinis Silvestre jose.silvestre@tecnico.ulisboa.pt

Instituto Superior Técnico