

Swiss Agency for Development and Cooperation SDC

SUSTAINABILITY ASSESSMENT IN CUBAN CEMENT SECTOR- A METHODOLOGICAL APPROACH

S. Sánchez Berriel, Y. Cancio, I. R. Sánchez, J. F. Martirena, E. Rosa, G. Habert

Email: ssanchez@uclv.edu.cu

September, 2019

1

Introduction	Method	Results	Integration	Conclusions	

Cuban context

Introduction Method Results Integration Conclusions	
---	--

```
LCSA = LCA + LCC + S-LCA
```

Where:

LCSA = Life Cycle Sustainability Assessement LCA = Life Cycle Analysis (enviromental) LCC = Life Cycle Costing S-LCA = Social Life Cycle Analysis

Introduction Method Results	Integration	Conclusions
-----------------------------	-------------	-------------

Goal, functional unit and system boundaries

Introduction	\rangle	Method	>	Results		Integration	>	Conclusions	
--------------	-----------	--------	---	---------	--	-------------	---	-------------	--

Details for input data in different technologies for Cuban cement industry

Indicators	Pilot level	Industrial level	BAT level
Kaolinite clay distance (km)	150	60-150	<100
Type of fuel	Cuban crude oil	Pet-coke + Cuban crude oil	Gas + Waste
Clinker technology	Wet rotatory kiln	4 stage pre- heater + pre- calciner	6 stage pre- heater + pre- calciner
Clay calcining technology	Wet rotatory kiln	Retroffited calciner	Optimized flash calciner

	Introduction	\geq	Method		Results		Integration	>	Conclusions
--	--------------	--------	--------	--	---------	--	-------------	---	-------------

Data used for calculation

Introduction Method	Results	Integration	Conclusions	
---------------------	---------	-------------	-------------	--

LCA results- Midpoint categories

Introduction	>	Method	Results	Integration	>	Conclusions	

LCC results- Production costs BAT Scenario

Introduction Method Results Integration Conclusions

S-LCA results- Potential of change

Potential of change							
	Subcategories	Indicators					
Insignificant	11%	14%					
Minor	11%	7%					
Moderated	67% _ 78%	6 50% - 79 29 - 79					
Significant	67%	29 [_]					

Incidence of diseases attributable	Local	Sector efforts for		
to cement production	employment	technological development		

PM emissions

Introduction Method Results	ntegration Conclusions
-----------------------------	------------------------

Concluding remarks

- Cuban industry needs a recapitalization to meet growing demand
- LC³ has a great potential to meet an increase in cement demand in the short term
- Environmentally speaking: LC³ is better than OPC even for worst production scenario
- Up to 30% CO₂ reduction
- Up to 15% lower production cost (OPEX)
- Social impacts have a significant potential of change if LC³ is introduced

Adapted from Martirena