

Reducing Water Footprint of building sector: concrete with seawater and marine aggregates

SBE19 Graz

Valeria Arosio¹, Alessandro Arrigoni², Giovanni Dotelli¹

¹ Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy

> ² Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada

September 12th, 2019

Presentation outline

Introduction

Water stress and freshwater consumption in the building sector
 SEACON project

Goal of the study

Materials and methods

lacksquare Scope of the LCA

□ Life Cycle Inventory

□ Life Cycle Impact Assessment

Conclusions and further investigations

Results

ΠΠ

Introduction

½ of the global population live in areas potentially scarce in water at least one month per year⁶
 Concrete is the building material with higher rate of growth^b

^a WWAP 2018 *The united nations world water development report 2018: Nature-based solutions for water* (Paris, France: UNESCO). ^b Miller et al. 2016, *Readily implementable techniques can cut annual CO*₂ *emissions from the production of concrete by ove 20%*. ERL, 11(7) ^c Miller et al 2018, *Impacts of booming concrete production on water resources worldwide* Nature Sustainability 1 69-76

Introduction

- □ Sustainable concrete using seawater, salt-contaminated aggregates
- □ Non-corrosive reinforcements: Glass Fiber Reinforced Polymer (GFRP), Stainless steel

Goal of the study

Assess the water footprint of concrete and investigate whether the use of **seawater** and **marine aggregates** could reduce it

Goal of the study

Assess the water footprint of concrete and investigate whether the use of **seawater** and **marine aggregates** could reduce it

Goal of the study

Assess the water footprint of concrete and investigate whether the use of **seawater** and **marine aggregates** could reduce it

1 cubic metre of unreinforced fresh generic concrete delivered to the construction site ^a

^a Ecoinvent, dataset "Concrete, normal {CH}, unreinforced concrete production with cement CEM/IIA"

Cradle-to-gate analysis

LAFW

LASW

MASW

Scope Geography

Life Cycle Inventory

Life Cycle Inventory Sources of data

Life Cycle Inventory Geolocation of quarries, cement plants and batching plants

- Quarries
- Cement plants
- Batching plants

- □ Official regional websites
- **I** Italian Association of Cement manufactures
- □ Italian Technical Economic Association for Ready-Mixed Concrete

Life Cycle Inventory Geolocation of seawater intake facilities and marine aggregates processing plants

Point along coast at the minimal linear distance from each batching plant

□ Seawater intake facility

□ Marine aggregates processing plants

LegendIntake facilities

Batching plants

Life Cycle Inventory Freshwater use

Indirect water use

Water used in preceding processes, embedded in materials and energy flows entering the process unit.

Direct water use

Water used directly in the process analyzed.

Life Cycle Inventory Direct freshwater use

Aggregates production							
Dry quarry	Wet quarry	Rock quarry					

□ Wash the machinary

□ Wash the aggregates

Wash the machinary
Wash the aggregates
Evaporation from quarry lake

Wash the machinaryDust control

Life Cycle Inventory Direct freshwater use

Dry quarry	Wet quarry	Rock quarry
Wash the machinary	Wash the machinary	Wash the machinary
Wash the aggregates	Wash the aggregates	Dust control
	Evaporation from quarry lake	

□ Water incorporated in the final product

Life Cycle Inventory Direct freshwater use

- $\hfill\square$ Wash the machinary and the yards
- Cooling activities
- Gas conditioning

- □ Mixing the concrete
- □ Wash the trucks
- □ Wash the yards

Water consumption:Evaporated waterWater incorporated in the final product

Life Cycle Impact Assessment AWARE

Water Footprint = water consumption × characterization factor

AWARE characterization factors

□ Account for the Available WAter Remaining in a watershed after the demand of humans and aquatic ecosystems is met.

Unit of measure: $\frac{m_{water world-eq}^3}{3}$ m³_{consumed} water

Direct water consumption	Basin scale factors
Indirect water consumption	National scale factors

Freshwater consumption in the base case scenario

Water footprint - base case scenario

🛛 Abruzzo

Eastern Sicily

□ Lombardy

□ Contribution of each unit process

Water footprint – Alternatives comparison

□ LAFW → LASW
 □ LAFW → MASW

Freshwater consumption (base case scenario)

Freshwater consumption (base case scenario)

Water Footprint base case scenario (LAFW)

WF of 1 m³ of concrete (D.U.) in Abruzzo

Water Footprint base case scenario (LAFW)

OOL

Water Footprint base case scenario (LAFW)

WF of 1 m³ of concrete (D.U.) in Lombardy

Results Water Footprint base case scenario (LAFW)

Mean WF and share of each unit process in the regions investigated

Mean, minimum and maximum WF in the different alternatives in the regions investigated

WF variation from basecase scenario (LAFW) to alternative mixes (LASW and MASW)

Mean, minimum and maximum WF in the different alternatives in the regions investigated

WF variation from basecase scenario (LAFW) to alternative mixes (LASW and MASW)

Mean, minimum and maximum WF in the different alternatives in the regions investigated

WF variation from basecase scenario (LAFW) to alternative mixes (LASW and MASW)

Water Footprint of the transport of 1 ton of marine aggregates from the coast to the batching plant

WF variation from basecase scenario (LAFW) to alternative mixes (LASW and MASW)

LAF

LAFV

	Abruzzo		Eastern Sicily		Lombardy	
			Max↓ (Min†)			
w⇒LASW %	-10%	-7%	-12%	-8%	-2%	0%
M⇒MASW %	-78%	-50%	-84%	-75%	-44%	20%
	-	-		-		

 $\Box Aggregates \ production \rightarrow determining \ parameter \ on the final overall freshwater \ consumption$

□ Aggregates production → determining parameter on the final overall freshwater consumption
 □ Freshwater evaporating from quarry lakes → considerably increase the amount of water consumed in case aggregates from wet quarries were used (i.e. up to 77% of the total consumption)

□ Aggregates production → determining parameter on the final overall freshwater consumption
 □ Freshwater evaporating from quarry lakes → considerably increase the amount of water consumed in case aggregates from wet quarries were used (i.e. up to 77% of the total consumption)

■ Mixing water → only a fraction of all the freshwater consumed along the production chain (i.e. from a minimum of less than 2% to a maximum of 12%)

■ Aggregates production → determining parameter on the final overall freshwater consumption ■ Freshwater evaporating from quarry lakes → considerably increase the amount of water consumed in case aggregates from wet quarries were used (i.e. up to 77% of the total consumption)

■ Mixing water → only a fraction of all the freshwater consumed along the production chain (i.e. from a minimum of less than 2% to a maximum of 12%)

■ Seawater as mixing water → reduction of the WF of concrete up to 12% in Eastern Sicily, negligible effect on the WF in Lombardy

□Aggregates production → determining parameter on the final overall freshwater consumption

□ Freshwater evaporating from quarry lakes \rightarrow considerably increase the amount of water consumed in case aggregates from wet quarries were used (i.e. up to 77% of the total consumption)

■ Mixing water → only a fraction of all the freshwater consumed along the production chain (i.e. from a minimum of less than 2% to a maximum of 12%)

■ Seawater as mixing water → reduction of the WF of concrete up to 12% in Eastern Sicily, negligible effect on the WF in Lombardy

□ Marine aggregates instead of land-won aggregates

→ in areas affected by water stress → considerable reduction of WF (i.e. in up to 80% in Eastern Sicily);

 \rightarrow if aggregates need to be transported for a long distance \rightarrow possible increase of WF

Further investigations

Burden shiftings

Global warming potential

Impacts on aquatic ecosystems

Reinforcement elements

Carbon steel

Stainless steel

DurabilityWhole life cycleLCC

Further investigations

Water evaporating from the quarry lake

Different provenience of freshwater for mixing

- Desalinated water
- Municipal water network

Sensitivity analysis

□ Different strenghts and water-to-binder ratios for concrete

THANK YOU FOR THE ATTENTION!