

Monitoring results of innovative energy-efficient buildings in Austria

Martin Beermann JOANNEUM RESEARCH ForschungsGmbH Eckhard Sauper Mess-, Regel-, Steuerungstechnik GmbH

SBE2019, Session "Processes 6" 13. Sept 2019

www.joanneum.at/life

<image>

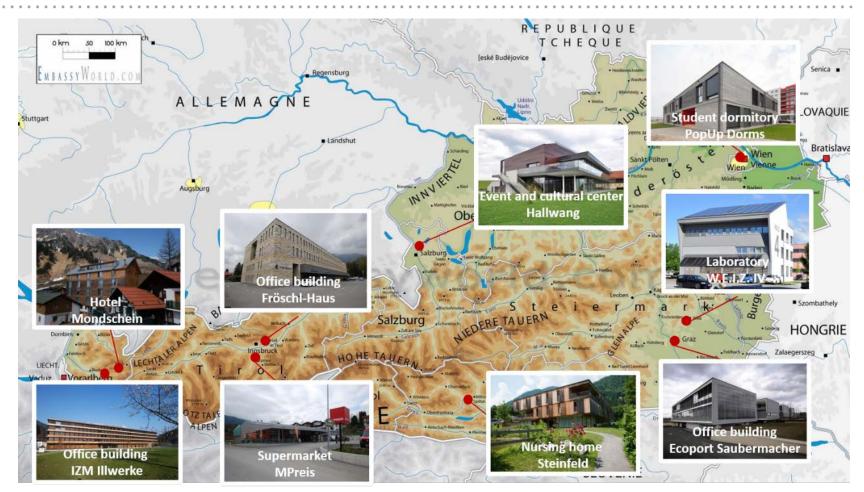
Contents

- Objective and introduction to buildings
- Monitoring method
- Selected results
- Summary

Objective

Project commissioned by the Austrian Federal Ministry of Transport, Innovation and Technology, financed within RTI-program "Stadt der Zukunft", 11/2015 – 12/2017;

 Objective: present nine innovative energy-efficient service buildings in Austria and make the potential of innovative building concepts and technologies visible, but also point to possible areas of improvements


Use category	PV	Solar- the rmal	Heat pump	Free Cooling	Active cooling	District heating	Steam humidifier	Component activation
Office building 1			\checkmark	\checkmark	✓		\checkmark	
Office building 2	\checkmark	\checkmark	\checkmark	✓		✓		✓
Office building 3			✓	✓				✓
Laboratory building	\checkmark			\checkmark	✓	✓	✓	✓
Nursing home						✓		
Market	\checkmark							
Hotel			✓					
Event center	\checkmark	✓		✓				✓
Student dormitory			\checkmark					

Innovative energy-efficient buildings

- minimize energy-losses of the building envelope
- use renewable, freely available environmental or waste energy sources
- have an intelligent control of mostly complex technical HVAC systems
- provide a satisfying user comfort

Monitored buildings

Methods applied

Monitoring of energy performance:

- Heating + cooling energy, hot water, electricity demand of the HVAC components, lighting, other building equipment, using heat flow and electricity meters (15 min-mean, 12 months)
- Calculation of energy indicators per gross floor area [kWh/m²a]: heating energy (temperature adjusted), cooling energy, warm water, final energy consumption (HVAC+lighting)
- Analysis of operation and parametrization of mostly fully automated HVAC systems for optimization potentials

Monitoring of comfort parameters:

- temperature, humidity, partly CO2 sensors (installed in rooms with different uses and solar expositions during different seasons,15 min)
- average room temperatures during the different seasons
- overheating hours
- relative humidity indoor in heating period and in summer

Methods applied

Evaluate buildings according to Austrian sustainability rating system TQB- Total Quality Building (V2010)

 5 equally weighted criteria groups (each max 200 pts, >50 indicators) A location+facilities,

B economy+technical quality,

C energy+supply,

D health+comfort,

- E resource efficiency
- Assessment based on information provided by building operators + monitoring data

Buildings were **not TQB-certified** in this project, results are therefore estimated and presented in ranges (e.g. 800-900 points of 1.000 max)

Ecological indicators OI3 (embodied life-cycle based impact of building envelope, combining global warming potential, acidification potential, non-renewable primary energy demand) and disposal indicator EI (V1.0)

(details <u>www.oegnb.net/tqb</u>, LCA-data from database <u>www.baubook.at</u>, building-products specific LCA-Tool eco2soft from IBO Austrian Institute for Healthy and Ecological Building)

Selected results – 3 office buildings

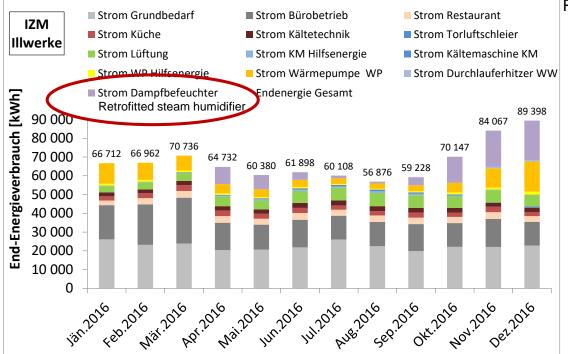
IZM - Illwerke (Vandans) Ecoport Saubermacher (Graz) Fröschl Haus (Hall i. Tirol)

- 13.000m² GFA, 270 employees Electricity supply company
- Hybrid timber building system, with prefabricated components
- Heat pump with waste heat of power plant generators
- Free Cooling with storage basin, supported by AC

Retrofitted steam humidifier

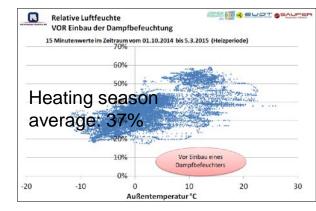
- 5.500m² GFA, 230 employees Waste + recycling company
- Facade integrated PV Groundwater heat pumps Free Cooling groundwater Solar thermal for hot water District heating (backup) Concrete core activation

- 4.900m² GFA, 130 employees Construction company
- Stamped-concrete facade
- Groundwater heat pumps
- Free Cooling groundwater
- Concrete core activation



Selected results – 3 office buildings

	CFROSOH!			
J. J. A. SICKERSPIER		IZM	Ecoport	Fröschlhaus
T-L-AND ROOM		Office	Office	Office
		building 1	building 2	building 3
	Gross floor area [m ²]	13.051	5.535	4.878
	Surface volume ratio [1/m]	0.29	0.42	0.81
	U-mean value [W/m ² K]	0.33	0.38	0.24
	Heating energy consumption [kWh/m ² a]	17	44.2	25.2
	Warm water consumption [kWh/m ² a]	1.3	3.3	0
	Cooling energy consumption [kWh/m ² a]	12.9	20.1	9.2
	Final energy consumption HVAC [kWh/m ² a]	21.4	44.1	19.7
	Mean room temperatur (ambient T<15°C / >15°C) [°C]		24.1 / 24.8	23.5 / 24
	Overheating hours >26°C (ambient T<15°C / >15°C) [%]	0 / 0	0 / 3-11	0/0-8.6
	Mean relative humidity (ambient T<15°C / >15°C) [%]	46.8 / 55.7	29.9 / 49.4	34.4 / 51.3
	TQB score (range out of 1 000 points)	800-900	700-800	800-900
	OI3-Indicator (BG1)	52	176	309
	EI (V1, 2012)	2.6	2.3	2



Selected results – IZM office building

Steam humidifier increases annual electricity consumption of HVAC-system by 64%, of the entire building electricity consumption by 14%.

Relative humidity before installation of steam humidifier



Relative humidity after installation of steam humidifier

Selected results – MPreis Supermarket Natters (Tirol)

Second passive house supermarket in Mid-Europe by MPreis

Heated only with the waste heat of the refrigeration system for the market products This building does not need a separate technical heating system and therefore almost no final energy for heating!

So-called "cold market" - internal heat sources are negative in this supermarket, which means that the heat extraction by the refrigeration units is higher than the internal heat sources - heat needs constantly to be supplied to the building, otherwise the market would cool down

Summary

- Final energy demand for HVAC systems in good accordance with planned values (energy certificates) of most monitored buildings
 - Use of freely available environmental and waste energy is the base for low final energy demand
- Use comfort is an issue concerning overheating in summer and relative humidity in winter
 - Overheating can be reduced/avoided by structural solutions (IZM, Fröschl)
 - (Steam) Humidifiers are very energy intensive
- TQB sustainability assessment shows high level of buildings
 - Health indicators often not measured (e.g. formaldehyde in indoor air)
 - Environmental indicators depend on materials used (OI3-indicator: hybrid timber vs concrete, EI disposal indicator: isolation material synthetic vs mineral materials)

Monitoring report (only German) available for download <u>https://nachhaltigwirtschaften.at/de/sdz/projekte/gema-messtechnische-untersuchung-von-energieeffizientendemonstrationsgebaeuden.php</u> THE INNOVATION COMPANY

Your contact

JOANNEUM RESEARCH Forschungsgesellschaft mbH LIFE – Institute for Climate, Energy and Society

SCIENCE Tower Waagner-Biro-Strasse 100, 8020 Graz +43 316 876-7632 martin.beermann@joanneum.at www.joanneum.at

