Parametric life cycle assessment of a reusable brick veneer

Camille Vandervaeren (ir. arch.), Waldo Galle (Prof. dr. ir. arch.), Niels De Temmerman (Prof. dr. ir. arch.)

Architectural Engineering Vrije Universiteit Brussel, Belgium

camille.vandervaeren@vub.be

SBE19 Graz 13th September 2019

"A sustainable building is not one that must last forever, but one that can easily adapt to change."

Peter Graham, Environment Design Guide, 2006, Royal Institute of Australian Architects

conventional brick veneer

reusable brick veneer

Reusing façade bricks is relevant because of their long technical lifespan

Comparative life cycle assessment (LCA) of two brick veneers

LCA

Goal & scope

Life cycle inventory

Life cycle impact assessment

Interpretation of the results

Functional unit (FU)

"a brick veneer, covering one square-meter of external wall with a self-bearing system, including anchors to the load-bearing structure, for 80 years".

Similar aesthetical, structural (self-bearing) and thermal performances, rain barrier.

System boundary

Stages A1-C4 End-of-life allocation approach: EoL recyclability 0:100 with credit for avoided virgin production

Reusable brick

180 kg hollow bricks7 kg plastic inserts8 steel anchorsReusability (R): 95 %Reusable up to 5 times

Brick & mortar

127 kg hollow bricks48 kg mortar5 steel anchorsReusability (R): 0 %

Ecoinvent database

Excluded processes

Packaging of the products Recycled content of the inserts Demolition process (i.e. emissions and machine use)

$$E = E_{prod} + E_{trans,c} + E_{cons} + N \times E_N + E_{decon} + E_{trans,w} + E_{waste}$$

$$E_N = E_{decon} + E_{cons} + E_{trans,N} \times \mathbf{R} + (E_{prod} + E_{trans,c} + E_{trans,w} + E_{waste}) \times (1 - \mathbf{R})$$

LCA – results

LCA single score calculation with ReCiPe Endpoint (H) V1.12 / Europe ReCiPe H/A and Ecoinvent v3. Unit: Points

11

LCA – results (conventional recycling rates)

LCA single score calculation with ReCiPe Endpoint (H) V1.12 / Europe ReCiPe H/A and Ecoinvent v3. Unit: Points

LCA – results (improved recycling rates)

LCA single score calculation with ReCiPe Endpoint (H) V1.12 / Europe ReCiPe H/A and Ecoinvent v3. Unit: Points

LCA – results

LCA single score calculation with ReCiPe Endpoint (H) V1.12 / Europe ReCiPe H/A and Ecoinvent v3. Unit: Points

14

The reusable brick product has a **lower life cycle environmental impact** than the conventional system, when the bricks are **reused at least once**.

The environmental impact of the reusable brick product is **less sensitive to building alterations** (N) than the conventional system. The reusable system is thus more **resilient**.

The environmental impact of reusable products can be evaluated with life cycle assessment, but defining adequate use scenarios is challenging (e.g. rebound effect).

The parametric **life cycle inventory** can be refined, differentiating the reusability (R) of the sub-systems (bricks, plastic inserts and anchors).

Different allocation approaches (0:100, 100:0, 50:50, etc.) can be compared.

"A sustainable building is not one that must last forever, but one that can easily adapt to change."

Peter Graham, Environment Design Guide, 2006, Royal Institute of Australian Architects

Parametric life cycle assessment of a reusable brick veneer

Camille Vandervaeren (ir. arch.), Waldo Galle (Prof. dr. ir. arch.), Niels De Temmerman (Prof. dr. ir. arch.)

Architectural Engineering <u>vub.be/ARCH/</u> Vrije Universiteit Brussel, Belgium

camille.vandervaeren@vub.be

SBE19 Graz 13th September 2019

