

SUSTAINABLE BUILT ENVIRONMENT D-A-CH CONFERENCE 2019 Graz, 11–14 September 2019

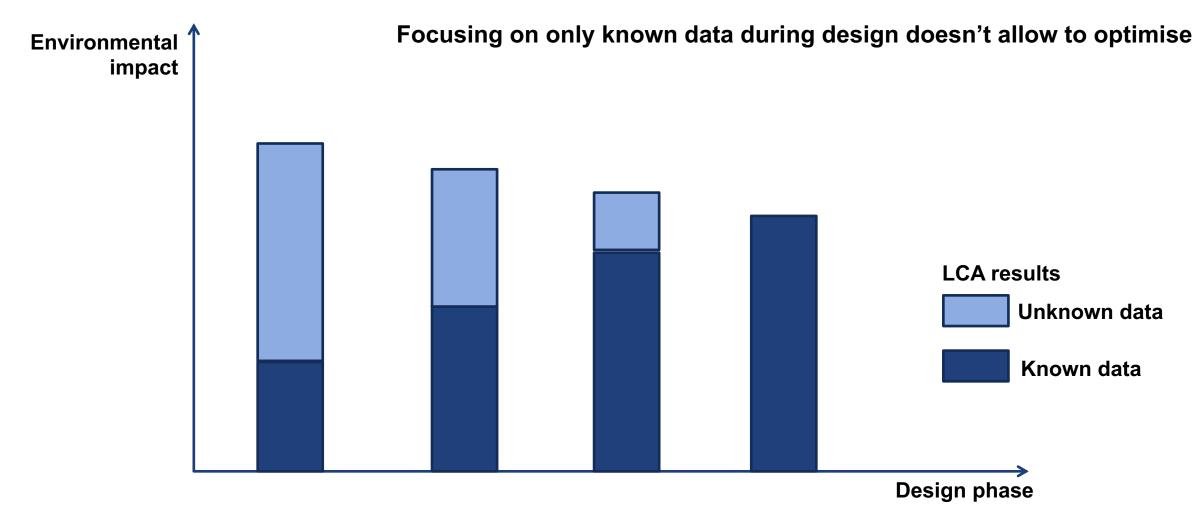
Consistent BIM-led LCA during the entire building design process

C Cavalliere¹, A Hollberg^{2,3}, G R Dell'Osso¹ and G Habert²

- ¹ Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari
- ² Chair of Sustainable Construction, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich
- ³ Department of Architecture and Civil Engineering, Chalmers University of Technology

Introduction

- Life Cycle Assessment (LCA) is a suitable method for holistic evaluation of the environmental performance of buildings
- Most time for LCA of buildings is spent on gathering the necessary information
- Building Information Modelling (BIM) can provide the necessary input and speed up the process


ETH zürich

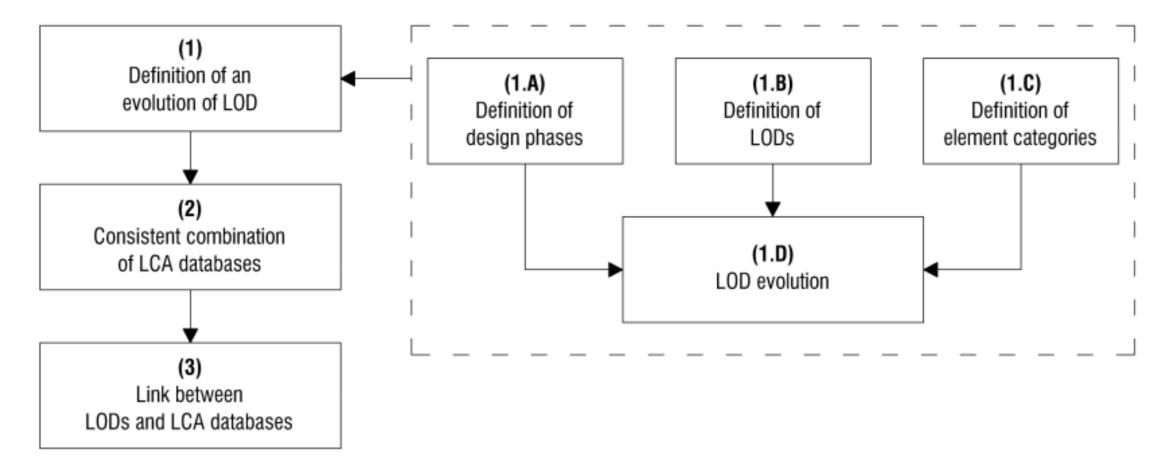
Early design	Detailed design	LOD	Tools	Ref.
	•	_	Revit, Navisworks, Excel, API	[12]
•		200	Revit, GBS, ATHENA Impact Estimator, Excel	[7]
•		_	Dprofiler, CostLab, eQUEST, SimaPro, ATHENA EcoCalculator, Excel	[13]
•		_	Revit, Dynamo, Excel	[14]
•		_	Revit, Excel	[11]
	•	_	Revit, Excel, SIMIEN, SimaPro 7.3	[16]
•		-	Grasshopper, Rhinoceros	[17]
	•	_	Revit, Excel, SIMIEN, SimaPro 7.3	[18]
	•	_	BIM tool (N/S), Excel	[19]
•		_	Revit, Ecotect, IESVE, Excel, Athena Impact Estimator	[20]
•		-	Revit, Athena Impact Estimator, Excel	[21]
	•	300	Revit, Korea LCI database	[9]
•		-	Grasshopper, Design Builder, DIVA, Ladybug, Galapagos, Octopus, Rhinoceros	[22]
	•	-	Revit, Revit DB link, MS Access, Athena Impact Estimator, Excel, Visual Studio	[23]
•		_	Revit, Tally, GBS	[24]
•		_	Revit, Revit API, External db	[25]
•		-	Revit, Insight	[26]
	•	_	Revit, Ecotect, Excel	[27]
•		200	Revit, Dynamo, Excel	[8]
	•	-	Revit, Power Pivot, FME, Google Maps API	[28]
	•	_	Revit, Dynamo, MySQL, Grasshopper, Slingshot, Archsim, Octopus, EnergyPlus	[29]
•		_	Revit, Excel	[30]
•		-	ArchiCAD, Excel	[31]
	•	300	Revit, Excel, Glondon BIM5D, eBALANCE, Designbuilder,	[10]

Risk

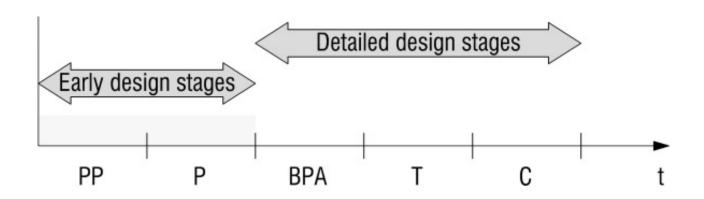
Problem

- Current BIM-LCA approaches are defined for a specific design stage / Level of Development (LOD) and do not allow for consistent feedback from early to detailed design stages
- Only assessing the defined components misses a large share of the impact

Goal


Develop a framework to

- use LCA as a consistent decision-making tool during all phases of the design process.
- consider the available information in the BIM model with as much accuracy as possible in each design stage.



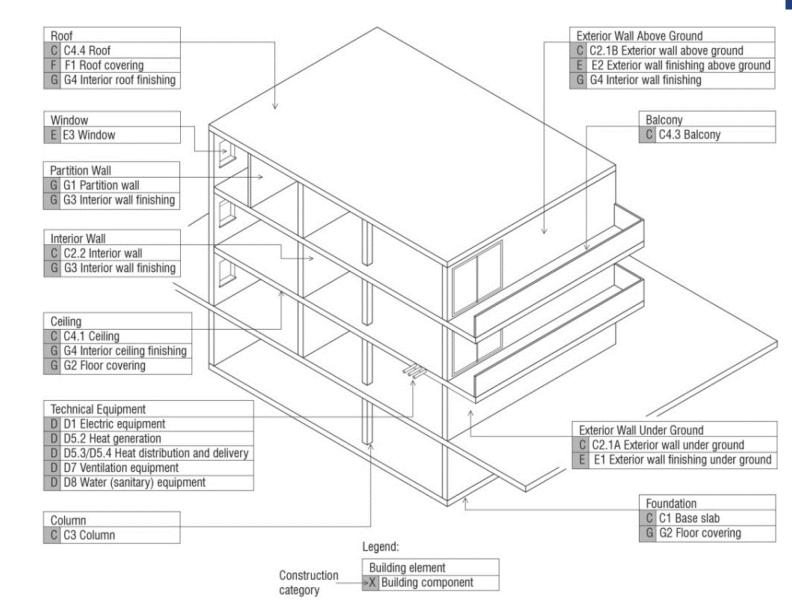
Method

1A Design stages

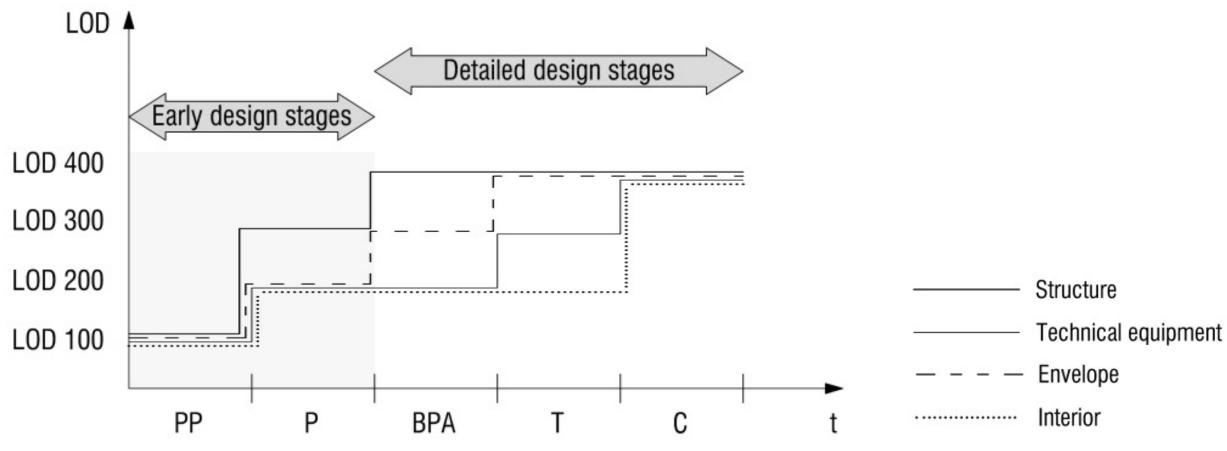
- Project Planning (PP)
- 2. Project (P)
- 3. Building Permit Application (BPA)
- 4. Tendering (T)
- 5. Construction (C)

1B LODs

LOD 100 LOD 200 LOD 300 Pre-LOD **LOD 400**


1C Element categories

Construction categories


- 1. Structure (C)
- 2. Envelope (E+F)
- 3. Interior (G)
- 4. Technical equipment (D)

Architectural elements

- 1. Base plate / foundation
- 2. Exterior wall under ground
- 3. Exterior wall above ground
- 4. Window
- 5. Interior wall
- 6. Partition wall
- 7. Column
- 8. Ceiling
- 9. Balcony
- 10. Roof
- 11. Technical equipment*

1D LOD evolution

2 LCA databases

- Per material*: KBOB list "Ökobilanzdaten im Baubereich 2009/1:2016" (https://www.kbob.admin.ch/kbob/de/home/publikationen/nachhaltiges-bauen/oekobilanzdaten-baubereich.html)
- Per component*: Bauteilkatalog
 (http://www.bauteilkatalog.ch/ch/de/Bauteilkatalog.asp)
- Per m² of building*: F. Wyss, R. Frischknecht, K. Pfäffli, V. John, Zielwert Gesamtumweltbelastung Gebäude - Machbarkeitsstudie, 2014.

*background data based on Ecoinvent 2.2

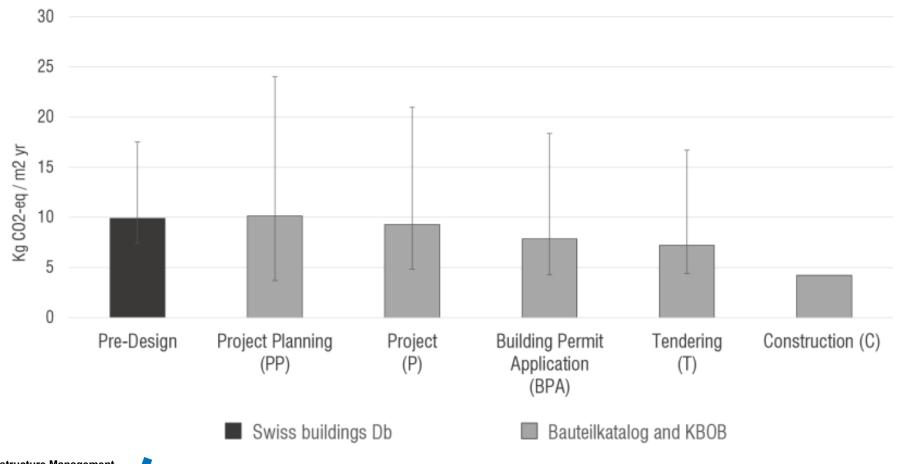
3 Link between LOD and database

LOD	Database	Use of Database
Pre	Swiss Buildings Database	Average value at building level
100	Bauteilkatalog	Average value at building element level
200	Bauteilkatalog	Average value at building component level
300	Bauteilkatalog	Specific value at building component level
400	KBOB	Specific value at material level

ETH zürich

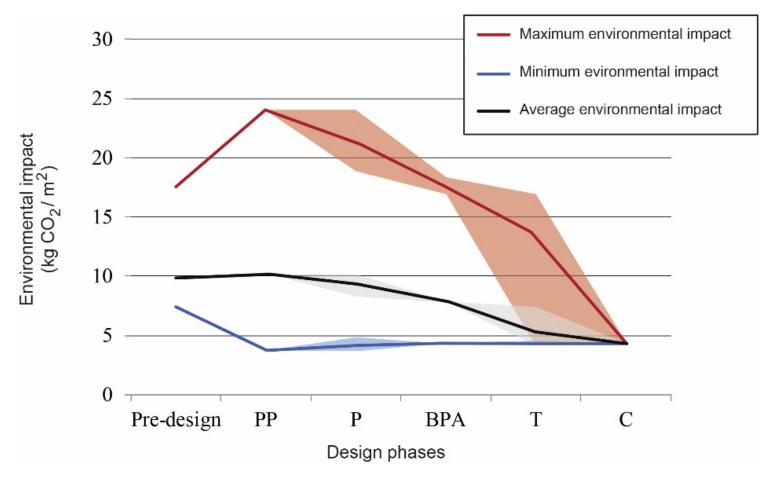
	BAUTED	LKATALOG	квов	LOD 400	LOD 300	LOD 200	LOD 100
Construction categories	Building components	Constructive solutions	Materials	LOD 400	LOD 300	LOD 200	LODIO
		Wooden frame construction	Hard wood	→ GWP		G WP average G WP min G WP max	
			Wood fibre insulation board	GWP	GWP		
	Load-bearing			→ GWP	4		
. Structure	wall	Concreete frame construction	Concreete	GWP			
			Reinforcement steel	GWP	GWP		
			. 100 1000	GWP			
				GWP	GWP		_
		Wooden cladding plasterboard plastered, wooden	Pine wood	GWP		G WP average G WP min G WP max	G WPaverage G WPmin G WPmax
			Larch wood	GWP	GWP		
	Exterior wall cladding			GWP			
E. Envelope			Plaster	GWP			
		substructure	Hard wood	GWP	GWP		
					Name and the second second		
				GWP	GWP		
	-		Gypsum	GWP		G WP average G WP min G WP max	
		Gypsum finishing	Paint	GWP	GWP		
0 107 VOV	Interior wall			GWP			
. Finishing	finishing	Wooden finishing	Wood	GWP			
			Paint	GWP	GWP		
				GWP			
	a .			GWP	GWP	16 m	

Case study



Institute of Construction & Infrastructure Management
Chair for Sustainable Construction
Dept. of Civil, Environmental & Geomatic Engineering

Architectural element	Area [m²]
1. Base plate / foundation	228.0
2. Exterior wall under ground	183.0
3. Exterior wall above ground	723.5
4. Window	200.7
5. Interior wall	1368.1
6. Partition wall	391.4
7. Column	0
8. Ceiling	1140.0
9. Balcony	90.0
10. Roof	228.0
11. Technical equipment	912.0*

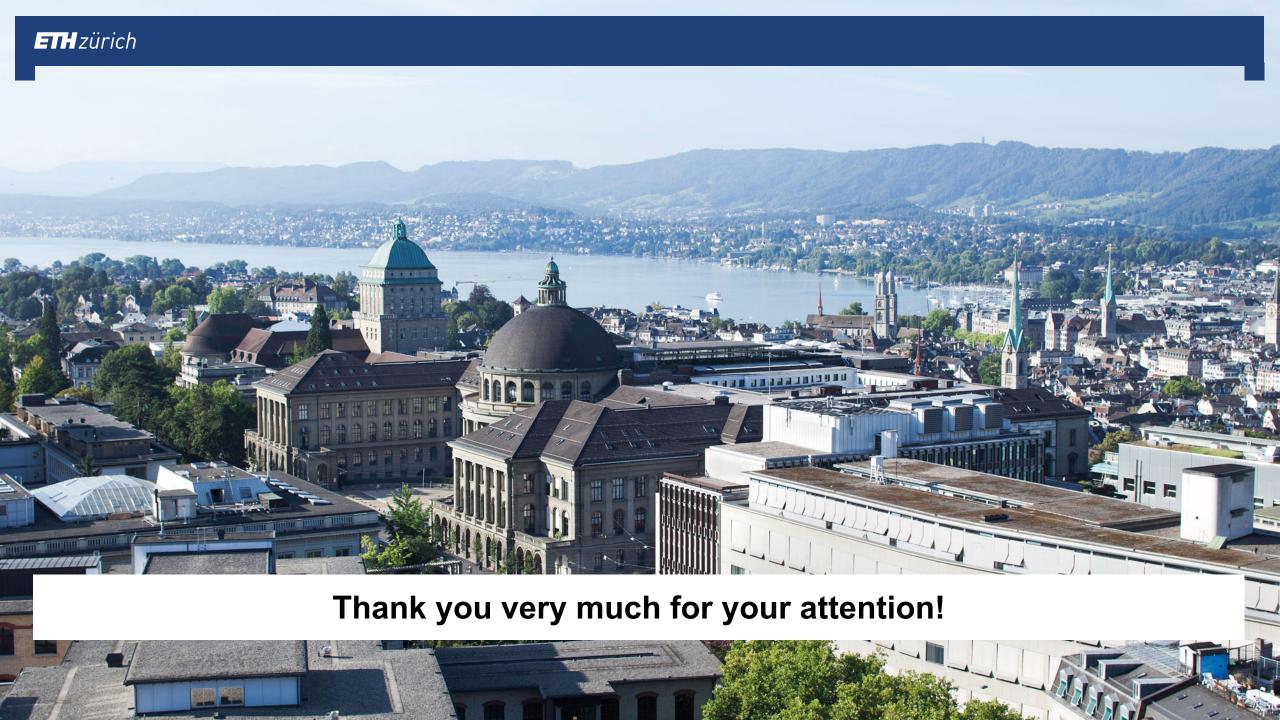

Results for embodied Global Warming Potential

Sensitivity towards LOD evolution

Building	Design phases					
components	PP	Р	ВРА	т	С	
Structure	100	300	400	400	400	
Envelope	100	200/ 300	300	400	400	
Technical equipment	100	200	200/ 300	300/ 400	400	
Interior	100	200	200	200/ 300	400	

Conclusions and future developments

- Mixing various LOD and LCA databases works (identical background data)
- Low sensitivity towards LOD choices
- Forecast of the final environmental impact
- LCA for decision support (always as accurate as possible)



Conclusions and future developments

- Mixing various LOD and LCA databases works (identical background data)
- Low sensitivity towards LOD choices
- Forecast of the final environmental impact
- LCA for decision support (always as accurate as possible)
- Integration of operational environmental impact
- Framework developed for Swiss context -> transfer to other countries
- Implementation as tool for BIM software

