

¹University of Stuttgart

Analysing the impact of retrofitting and new construction through probabilistic life cycle assessment.

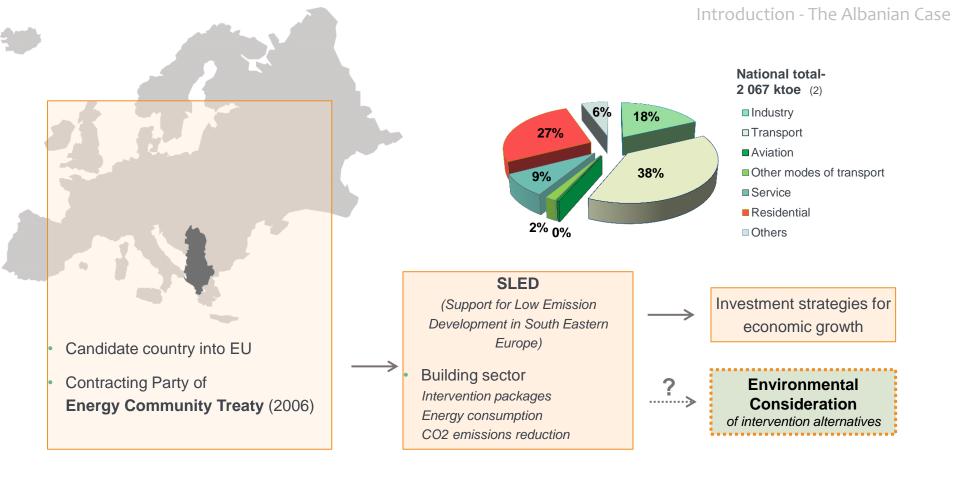
A method applied to the environmental-economic payoff value of an intervention case in the Albanian building sector

O. Jorgji¹, R. Di Bari¹, K. Lenz², J. Gantner², R. Horn¹

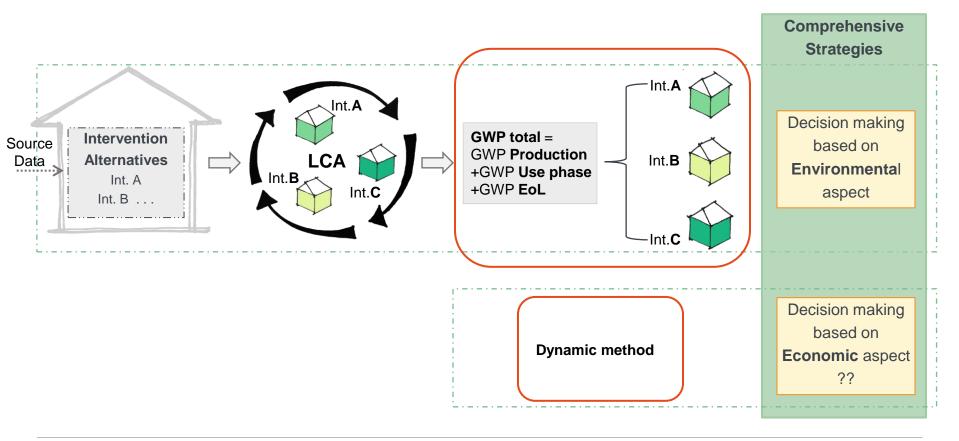
Jorgji Olivia

Overview of the existing building stock in EU

- EU replacement rate of old buildings by new build = 1% / year (1)
- Renovation rate= 1-2% * year (1)
- More than 90% of existing stock in EU was built before 1990 (1)


Major role in employing Energy
Efficiency goals

Importance of joint pursuit in global scale for achieving CO2 emissions reduction until 2050


Engagement of non EU countries in the EE and environmental protection strategies

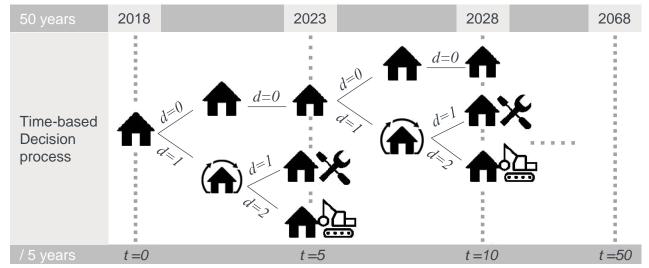
⁽¹⁾ European Parliament Boosting Building Renovation: What Potential and Value for Europe? 2016 Study for the ITRE Committee

(2) Energy Balance Sheets (EUROSTAT) 2016-data, 2018 edition

Life Cycle Assessment application

Static LCA DIN EN 15804

- System boundaries
 Cradle Grave
- Building lifespan50 years
- Functional Unit
 Net surface area


				BUI	LDING L	IFE CY	CLE INF	ORMATI	ON					SUPPLEMENTARY INFORMATION BEYOND BUILDING LIFE CYCLE
		Module	Α			Мо	odule B				Module	e C		Module D
Pro	oduct St	age		truction ss Stage			Use Stag	9			End-of-L	ife Stag	€	Benefits and loads beyond the system boundary
A1	A2	АЗ	A4	A5	B1	B2	В3	B4	B5	C1	C2	C3	C4	D
material supply	ransport	Manufacturing	Transport	tion – Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	tion demolition:	Transport	processing	Disposal	Reuse, Recovery, Recycling potential
Raw ma	Tra	Manu	Tra	Construction	B7 B6			energy u		Deconstruction	<u> </u>	Waste	, D	rteeyeming peterhilar

	Indicator	Unit	Model
Climate change – total*	Global Warming Potential total	kg CO2 eq.	Baseline model of 100 years of the IPCC based
	(GWP-total)		on IPCC 2013

- Intervention Alternatives
 - Existing (no intervention) USE PHASE & END OF LIFE
 - Intrv. A Refurbishment (intervention in existing structure to extend its nominal service life) PRODUCTION & END OF LIFE
 - Intrv. B Rebuild (demolition of existing & build a new) END OF LIFE FOR EXISTING & PRODUCTION + USE FOR NEW

Probabilistic LCA with application of Monte Carlo simulation

- Decision making5 year intervals
- Observation period50 years

1st Decision: Intervention?

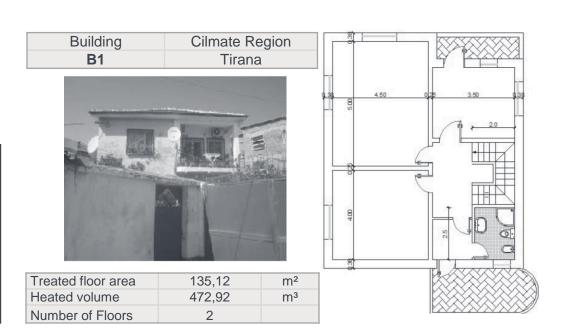
- 0/1
- 2nd Decision: Refurbishment/ Rebuild?
 - A/B
- Total GWP for interventions during 50 years

$$R_V =$$
 $> P(I)$ No intervention Dec=0 $< P(I)$ Intervention Dec=1

$$C_{t+p (Intr.A)} = \begin{cases} \geq 75\% *C(Reb) \rightarrow Intrv. \ B \ Dec = Intrv.B \\ < 75\% *C(Reb) \rightarrow Intrv. \ B \ Dec=Intrv.A \end{cases}$$
 \leftarrow

$$C_{t+p (Intr.A)} = \begin{cases} \geq 75\% *C(Reb) \rightarrow Intrv. \ B \ Dec=Intrv.B \\ < 75\% *C(Reb) \rightarrow Intrv. \ B \ Dec=Intrv.A \end{cases}$$

$$GWP_{tot} = \sum_{v=1}^{50} GWP_{prod, y} + GWP_{use, y} + GWP_{EoL}$$


Building B1 (Albanian residential building typology: Simaku, Thimjo and Plaku 2014b)

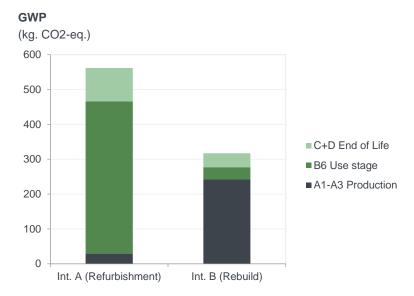
Type: detached house

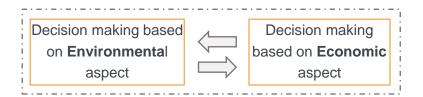
Building period: <u>1961-1980</u>

Construction elements:

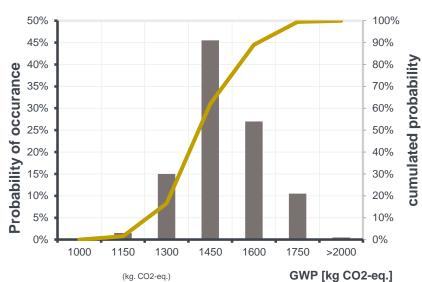
Exterior wall	Solid red brick			
Roof/ceiling	Red roof tiles			
Floor slab	Concrete floor			
Windows	Single glazed, wooden frame			
Exterior door	Wooden door			
Energy supply system	National electricity network Multi-split AC, Pellet-boiler			

Intervention alternatives (3)

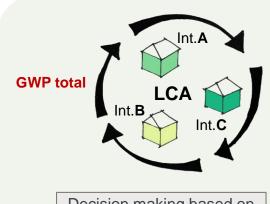



Construction	Defurbishment massures	Debuild elegatoristics*
Construction	Refurbishment measures	Rebuild characteristics*
Exterior wall	Red brick, Polystyrene EPS 10cm <i>U-Value=0.29 W/m²K</i>	Limestone, EPS , Plaster U-Value=0.24 W/m²K
Roof/Ceiling	Roof with red tiles, Polystyrene EPS 12cm <i>U-Value=0.27 W/m²K</i>	Plasterboard, Therm. insulation EPS, Wood constr., MDF-plates, Roof tiles, <i>U-Value=0.176 W/m²K</i>
Floor slab	Concrete floor, Polyst. EPS 5cm, U-Value=0.54 W/m²K	Cement, Insulation EPS, PVC-P, reinforced concrete, mineral-wool, gips, <i>U-Value=0.14 W/m²K</i>
Window	Triple thermal insulation glass, 90% Plastic frame U-Value =0.65 W/m²·K	=
Exterior door	Plastic door U-Value =0.75 W/m²⋅K	=
Energy supply system	Electricity (Hydropower) Pellet boiler 25% energy Low temperature gas system 10% energy Multisplit-clima unit 65% energy	Energy supply based on electricity based systems Electricity from Hydropower 100%
Energy demand	9.410,5 kWh/y. electricity demand 27.785,9 kWh/y. heat energy demand	16.079,3 kWh/year

^{*} Based on EnEV 2014 requirements

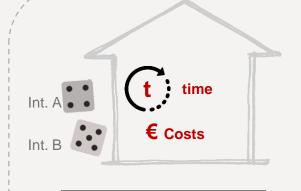

⁽³⁾ Novikova Szalay Simaku Thimjo Salamon Plaku and Csoknyai The typology of the residential building stock in Albania and the modelling of its low-carbon transformation 2015

Static LCA


Probabilistic LCA

MAX	4281,49	
MIN	1052,57	
Average	1372,95	
Standard deviation	242,38	
MEAN VALUE	1530	

Nr of refurbishments	
(for 200 runs)	572
Nr of rebuilds (for 200 runs)	56
Total nr of interventions	
(200 runs)	628


The more complex and rich the assessment method – the more relevant the results

Decision making based on **Environmenta**l aspect

- Global intervention for structural enhancement
- Other local Intervention options
- Impact indicators (ODP, AP, EP, Pene, . . .)

Comprehensive Strategies

Decision making based on **Economic** aspect

- Rest value of building after intervention
- Value of new building
- Life span of building after intervention
- Risk factors
- User preference

Thank you! Questions?

M.Sc. Olivia Jorgji

e-mail olivia.jorgji@iabp.uni-stuttgart.de phone +49 (0) 711 970 3182

University of Stuttgart
Department Life Cycle Engineering GaBi
Wankelstrasse 5 | 70563 Stuttgart | Germany