

Christof Knoeri

Innovative designs of building energy codes for building decarbonization and their implementation challenges

Christof Knoeri, Marius Schwarz, Christina Nakhle SBE Graz 2019

"**Building Energy Codes** are a sleeper, but if you get them right, you can do some pretty cool stuff"

- Kelly Knutsen, director of technology advancement at California Solar & Storage Association

"Building Energy Codes are a sleeper,

but if you get them right, you can so some pretty cool stuff"

- Kelly Knutsen, director of technology advancement at California Solar & Storage Association

Building Energy Codes (BEC) are **policy instruments** that **set minimum requirements for buildings** with the **aim to reduce buildings' energy use** and **carbon emissions**

- The Building sector is responsible for 31% of global final energy demand and 23 % of global energy-related CO₂ emissions (IPCC, 2018)
- Policy intervention is required because of several market failures in the construction sector
 - Principle-agent problem
 - Strong depreciation of investment returns in later years

- BECs have proven to be effective and efficient in shaping the decarbonisation of the building sector during the last decades
- Despite their long history and success, policymakers increasingly recognize the limitations of current BEC designs.
 - Prescriptive requirements
 - Focus on planned values

Research shifts towards discussing individual innovative BEC designs and their potential to overcome prevalent limitations

We aim at answering three research questions

RQ 1: How do state-of-the-art BECs address leverage points to help building decarbonization?

RQ 2: How do innovative BEC designs address these leverage points, and what challenges did policymakers face when implementing them?

RQ 3: What general design principles for future BECs can we draw from these innovative designs?

Literature Review

• Identifying leverage points for building decarbonization

Multi-case study analysis

- Step 1 Case Selection: Selection of BECs that are already in the phase of implementation and have similar climatic condition
- Step 2 Document Analysis: In-depth analysis of building regulations of selected countries (707 pages), validation with secondary literature
- Step 3 Semi-structured Interviews: 18 semistructured expert interviews with researchers, practitioners and regulators

EHzürich

We identified 5 key leverage points for the future decarbonisation of the building sector

SusTec

Insights from selected international cases

Increase Energy Efficiency

State-of-the-art

- General trend towards performance based regulation (kWh/m²)
- But complemented with prescriptive boundary conditions (e.g., U-values)

Innovative

 Denmark: Increasing energy efficiency by preannouncing upcoming BECs

Reduce Embodied Energy

State-of-the-art

Hardly considered in current regulations

Innovative

 France: Reducing embodied energy by taking a lifecycle perspective and adopting requirements for the construction phase

Increase Renewable Energies

State-of-the-art

 General trend towards performance based regulation that includes renewable energies (kWh/m²)

Innovative 📫 🕂

- Switzerland: Increasing renewable energy by requiring on-site electricity generation and renewable heating
- England: Increasing renewable energy with a carbon emission metric

Close the Performance Gap

State-of-the-art

 Evaluation of building performance bases almost exclusively on predicted values

Innovative

 Sweden: Closing the performance gap by complying with measured energy demand two years after occupancy

Accelerate Renovation

State-of-the-art

- Renovations are regulated, but there is no specific measures to increase the rate
- Innovative
- France: Accelerating retrofits through retrofit obligations for existing buildings and preannouncing them years in advance

Implementation challenges of innovative BEC designs

Leverage point	Innovative Design	Implementation Challenge	
Energy Efficiency	Increasing energy efficiency by preannouncing upcoming BECs	 Strong endorsement for innovation Increases concerns about higher investment costs 	
Embodied Energy	Reducing embodied energy by taking a lifecycle perspective and adopting requirements for the construction phase	 + Encourages construction industry to use and development low-energy building materials - Requires extensive prior testing and continuous learning 	
Renewable Energies	Increasing renewable energy by requiring on-site electricity generation and renewable heating	 + Very effective in increasing renewable energy - Seen as technology specific 	
	Increasing renewable energy with a carbon emission metric	 + Aligns BEC requirements with energy & climate targets - Can results in less energy-efficient buildings 	
Performance Gap	Closing the performance gap by complying with measured energy demand two years after occupancy	 Increases matching between calculated and measured requirements Requires increased effort for enforcing authority 	
Renovations Sus Tec	Accelerating retrofits through retrofit obligations for existing buildings and preannouncing them years in advance	 + Provides a fair planning horizon for building owners for retrofitting - Increases upfront investment costs - Could result in more but less deep retrofits Christof Knoeri 13.09.2019 7 	
JUSIEC			

By synthesizing the implementation challenges across our five case studies, we derive six policy design principles for BECs

Keep additional burdens for	Create long-term regulatory	Beware technology-specific
building owners light	certainty	requirements
Anticipate the impact of new regulations on smaller actors	Promote knowledge of innovative design	Integrate BECs in the local context

Conclusion

- Building Energy Codes that historically set minimum requirements for the energy use of buildings have proven effective and efficient for building decarbonization
- However, researchers increasingly recognize the design limitations of prevalent BECs.

This study, therefore, aimed to evaluate innovative BEC designs that address leverage points for building decarbonization.

We identify 5 leverage points for building decarbonization	Energy Efficiency	State-of-the-art BEC designs	Synthesizing challenges that policymakers face when
	Embodied Energy	increase energy efficiency and renewable energies	implementing innovative BEC designs, we derived six
	Renewable Energies	Frontrunner countries have	design principles
	Performance Gap	already begun to address the remaining leverage points by	Keep additional burdens for building owners lightCreate long-term regulatory certaintyBeware technology- specific requirements
	Renovations	implementing <u>innovative BEC</u> <u>designs</u>	Anticipate the impact of new regulations on smaller actors Promote knowledge of innovative design local context

Thanks for your attention!

Dr. Christof Knoeri +41 44 632 98 24 cknoeri@ethz.ch

inhab

Marius Schwarz +41 44 633 80 48 cnakhle@ethz.ch

Christina Nakhle +41 44 632 04 22 cnakhle@ethz.ch SusTec

Christof Knoeri 13.09.2019