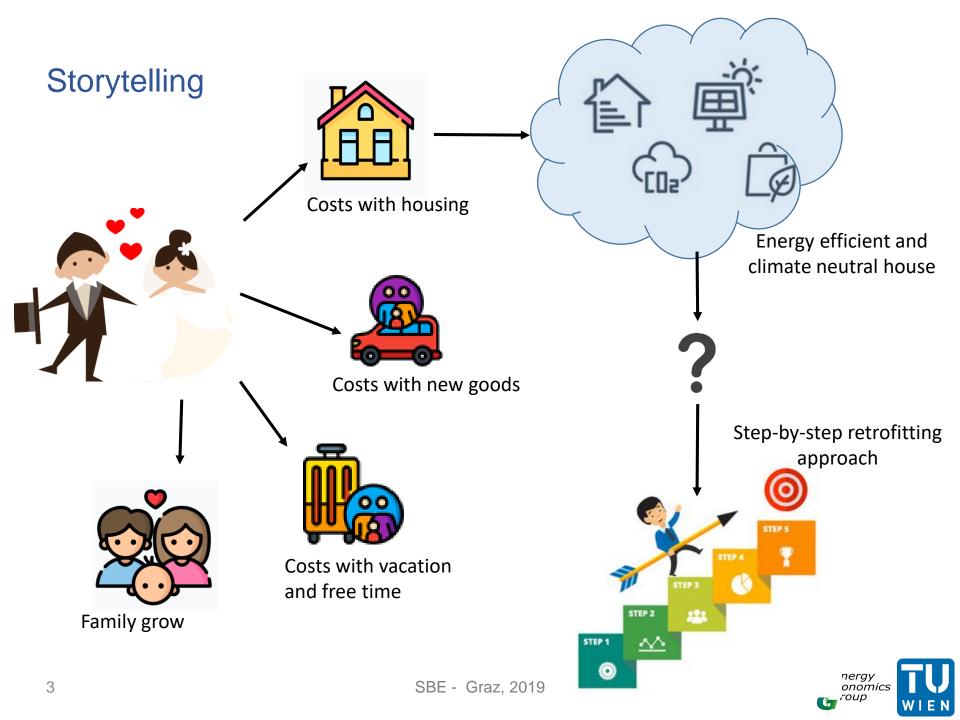


# Defining a framework to apply retrofitting optimisation models for long-term and step-bystep renovation approaches

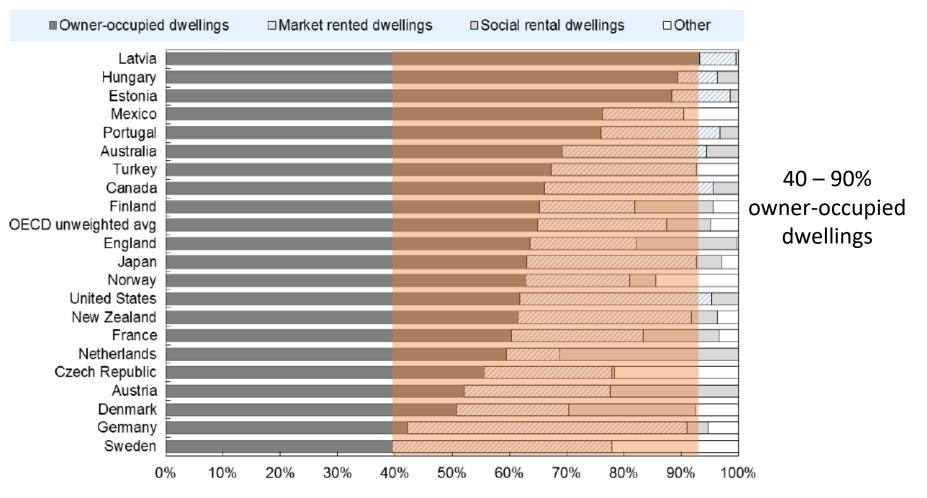
Iná MAIA and Lukas KRANZL

SBE – Sustainable Built Environment, Graz, 2019


13.09.2019



# Content


- Introduction
- Research question
- Method
- Results
- Conclusions and Outlook

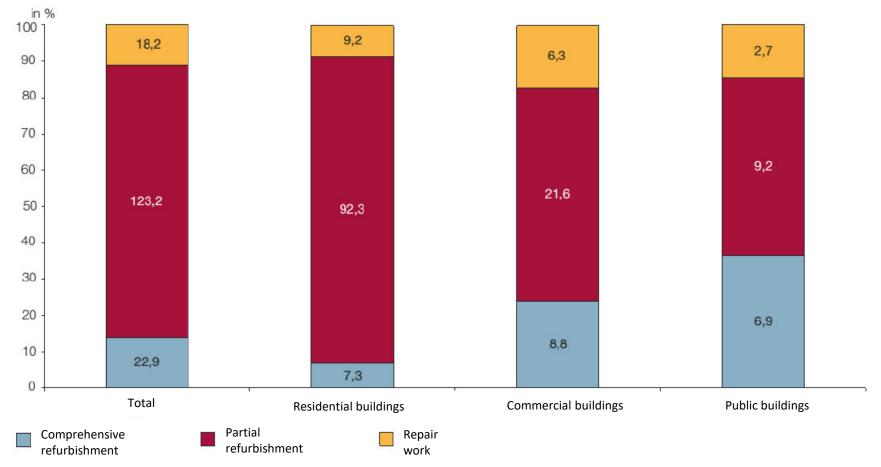




# Introduction: facts about owner-occupied dwellings

#### Per cent of dwelling stock, most recent year




Source: Housing tenure across OECD countries,

del Pero et al. 2016



# Introduction: facts about empirical evidences of step-by-step

Existing Building stock volume of comprehensive and partial refurbishment, as well as repairing (in Mrd. Euro) Stand: Germany, 2010



Source: adapted from Fehlhaber, 2017 – PhD Dissertation – Bewertung von Kosten und Risiken bei Sanierungsprojekten



# Introduction: political context

- Building renovation passports:
  - Energy Performance of Buildings Directive (EPBD) 2018/844/EU introduced in Article 19a:

"complementary document providing a long-term and step-by-step renovation roadmap for a specific building"

This document should guide and help building owners through the renovation process



# Overall objective and research question

- Main objective:
  - Bridge the gap between building stock decarbonisation targets and real renovation processes
  - In real life, many renovation processes are performed step-by-step
  - But, most deep renovation modelling focus on single stage deep renovation
- Model under development: step-by-step retrofitting optimisation model focusing on owner-occupied dwellings
- Objective of this paper: explore some aspects of the optimisation's framework

How to break down a single stage in different renovation steps over the time? Which parameter should determine the time-wise prioritisation of the retrofitting measures?

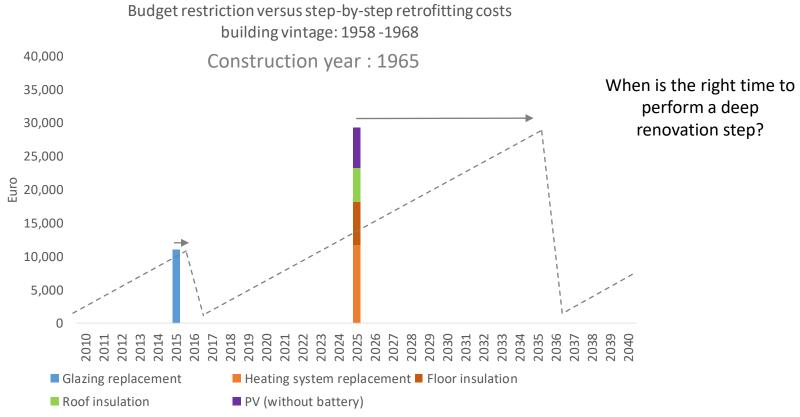




Sources: Jürgen Fälchle - Fotolia.com , Amber Taufen - inman.com and Andre Haykal Jr - thriveglobal.com



# Method: identifying main differences between retrofitting approaches


|                               | Single stage                                                                                      | Step-by-step                                                                                  |
|-------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Definition                    | Only major renovation<br>(including whole building envelope)                                      | Retrofit measures performed according to trigger points.                                      |
| Time dimension                | At once                                                                                           | Over years (or decades)                                                                       |
| Main risks                    | If not done right, mistakes take long<br>time (even decades) to be corrected<br>(lock-in effects) | Include missed opportunities and lock-in effects                                              |
| Effects on<br>climate targets | Faster CO <sub>2</sub> emission reduction (potentially more energy savings)                       | Gradual CO2 emission reduction                                                                |
| Main barrier                  | Disruption and/or affordability                                                                   | Less information about right sequence of<br>measures                                          |
| Material Costs                | At once – possibility that loans and incentives are available                                     | Cost-shifting – further measures costs can<br>be partially anticipated                        |
| Labour /<br>Montage Costs     | At once                                                                                           | Scaffolds and other construction site<br>equipment might have to be mounted more<br>than once |

Sources: adapted from Topouzi et al.2019 – Deep retrofit approaches: managing risks to minimise the energy performance gap



# Graphical presentation of the open question

- Total costs step-by-step: 42000 Euros (including scaffold)
- External wall insulation -> not insulated could have 90 years materials lifetime
- 3. Profile of budget restriction 5% of share





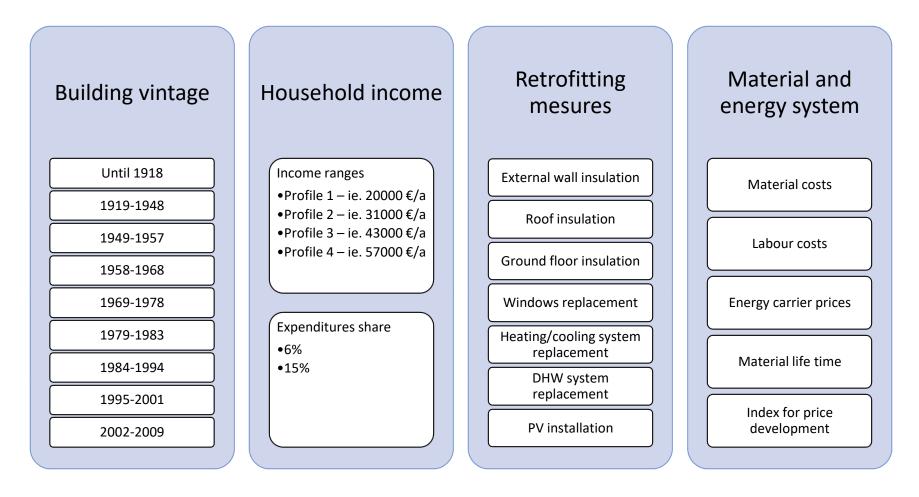
# Results: overview of step-by-step optimisation framework

Objective function: maximising net present value

$$\max NPV = \sum_{t}^{T} \frac{CF_{t}}{(1+r)^{t}} + \frac{L_{T}}{(1+r)^{T}}$$

$$CF_{t} = INC_{t} * s - IC_{er,t} - EC_{t} - OMC_{t}$$

$$L_{T} = \sum_{i} \sum_{t} IC_{er,t,i} * \frac{(T-t)}{t_{L,i}}$$


$$L, resi$$

- Restrictions:
  - Material's aging process
  - Budget restriction

- NPV, energy related net present value [EUR];
- CF, cash-flow of energy related expenses [EUR];
- L, residual value of the retrofitting measures in year T [EUR];
  - r, interest rate [%];
    - t, time [a];
  - T, period of economic consideration [a];
    - INC, household income [EUR/a];
  - s, expenditure share of annual income [%/a];
- ICer energy related investment cost of retrofitting measures [EUR];
  - EC, annual running energy costs [EUR/a];
  - OMC, operation and maintenance costs [EUR/a];
    - tL,technical lifetime [a];
    - T, optimisation period time [a];



# Results: setting input data, example for SFH in Germany



Sources: TABULA Episcope, 2012, Bundeszentrale für politische Bildung, 2018, Eurostat, 2018, Pfeiffer, 2010 and Invert-EE/Lab, 2019



# **Conclusions and outlook**

## How to break down a single stage in different renovation steps over the time?

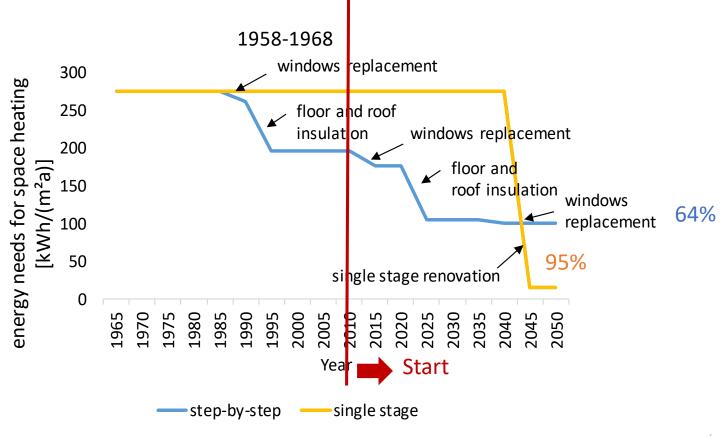
- Step consists of one or more retrofitting measures
- Measures: active or passive systems -> building envelope or building services
- Measure by measure cost data (material and labour costs)
- Different income profile with two different expediture share -> building owner's budget restriction
- Which parameter should determine the time-wise prioritisation of the retrofitting measures?
  - Net present value is an appropriate indicator to analyse the economic effects of time dimension of retrofitting approaches
  - Techno-ecomomic parameters: investment costs, budget restrictions, energy demand indicators, technical aging process of material's

## Outlook

- Techno-economic relevant synergies of measures (sequence and dependency of measures)
- Run first results
- Sensitivity analysis based on cost and income profile variations, energy prices and political scenarios
- Upscale to a building stock level



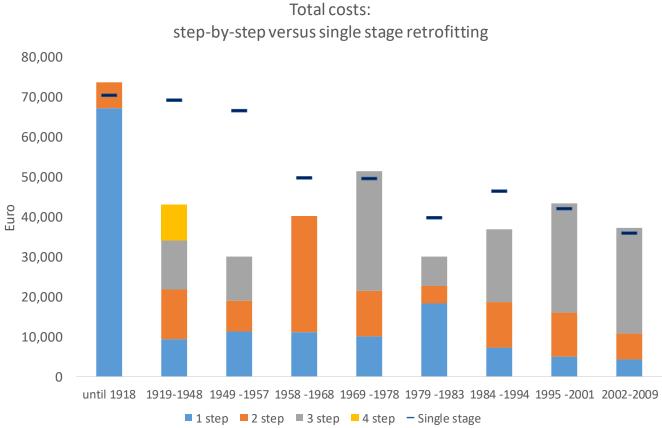




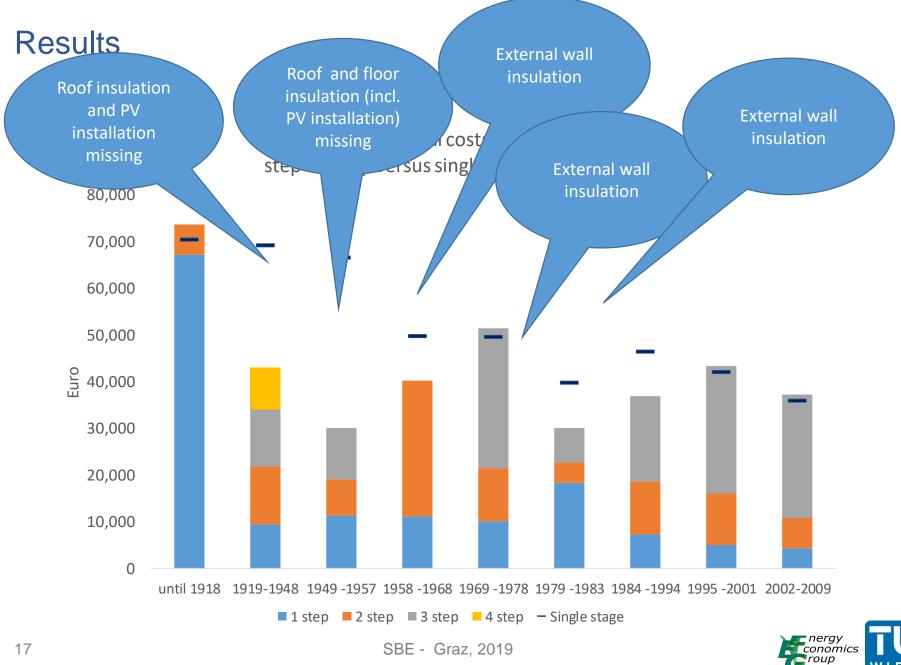

# Thank you for your attention!

Iná Maia maia@eeg.tuwien.ac.at

# Results: pre-analysis, SFH Germany


- Possible development of energy needs for space heating (concepts step-bystep and single stage)
- Examples: construction vintages 1958-1968






# Results: total costs for all reference buildings

- Step-by-step approach is only cheaper in cases, where not all measures are performed
- Older buildings are more expensive to deep retrofit







SBE - Graz, 2019

WIEN

## Results: defining the parameters

• 
$$IC_{er,i,t} = \sum_{i} [IC_{tot,i} - (1 - p_{t,i}) * IC_{man,i}] * x_{t,i}$$

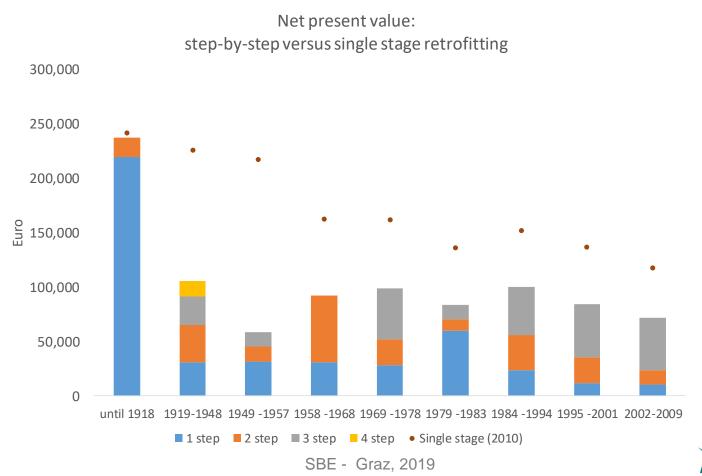
 $IC_{man}$ , maintenance investment cost of renovation measures [EUR]; *x*, binary variable (1 or 0) [-]; *p*, probability of material's aging process [-]; i, building envelope (external wall, window, floor or roof) and active system (heating, cooling, domestic hot water)

•  $EC_t = \sum_i fed_{t,i} * pr_{t,i}$ 

EC, energy costs [EUR/a]; fed, final energy demand [kWh/a]; pr, energy price [EUR/kWh]

•  $OMC_t = \sum_i IC_{er,t,i} * f_{OMC,i}$ 

*OMC,* operation and maintenance costs [EUR/a];  $IC_{er}$ , energy related investment costs of active system [EUR]; f; operation and maintenance factor [%]


• 
$$p_{i,t} = 1 - e^{-\left(\frac{t - t_{i,0}}{t_{i,L} - t_{i,0}}\right)^m}$$
, where t, t<sub>0</sub>, m>0

*p*; probability of material's aging process; *m*, aging exponent [-];  $t_L$ , technical lifetime [a];  $t_O$ , period without failure [a]; *t*, time [a].



# Results: net present value for all reference buildings

- Interest rate: 3%
- Single stage has higher NPV than step-by-step in all cases
- Time of retrofitting becomes a relevant parameter



# Results: main condictions of the optimisation framework

Conditions for the step-by-step renovation

for: 
$$p_{i,t} = 1 - e^{-\left(\frac{t - t_{i,0}}{t_{i,L} - t_{i,0}}\right)^m}$$
, where t, t<sub>0</sub>, m>0

*p*; probability of material's aging process; *m*, aging exponent [-];  $t_L$ , technical lifetime [a];  $t_O$ , period without failure [a]; *t*, time [a].

if: 
$$B_t \ge IC_{er,t} + EC_t + OMC_t$$
 and  $p_t > 0.05$   
• with  $B_t = A_{t-1} * (1 + l)$   
• with  $A_t = (INC_t * s) - IC_{er,t} - EC_t - OMC_t + A_{t-1}$ 

then:

• 
$$fed_{t+1} = fed_t * f(IC_{er,i})$$
  
•  $x_{i,t} = 1$  und  $p_{i,t+1} = 1 - e^{-\left(\frac{t-t_{i,0}}{t_{i,L}-t_{i,0}}\right)^m}$  (aging process restarts)

B; budget restriction [B]; *IC<sub>er</sub>*, energy related investment cost of retrofitting measures [EUR]; *EC*, annual running energy costs [EUR/a]; *OMC*, annual running operation and maintenance costs [EUR/a]; I, Ioan [EUR]; A, cumulated allocated energy related asset [EUR]; INC, household income [EUR]; s, allocation factor of total annual income on energy related expenses [%]; p, probability of material's aging process [%]; fed, final energy demand [kWh/a]; x, binary variable (1 or 0) [-].



# Introduction: facts about household net adjusted disposable income in OECD countries in 2018

Latvia 16,275 Greece 17,700 19,697 Estonia Poland 19,814 Slovak Republic 20,474 Slovenia 20,820 Portugal 21,203 Czech Republic 21,453 Lithuania 21,660 Spain 23,999 Bride range between the EU Ireland 25,310 and also inside a country Italv 26,588 United Kingdom 28,715 Netherlands 29,333 Denmark 29,606 Finland 29,943 Belgium 30,364 Sweden 31,287 France 31,304 Austria 33,541 Germany 34,294 Norway 35,725 Switzerland 37,466 Luxembourg 39,264 0 5.000 15.000 20.000 10.000 25,000 30,000 35.000 40.000 45.000

Household net disposable income in EU countries in 2018

Source: Statista 2019



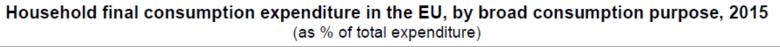
in 2016 PPP U.S. dollars

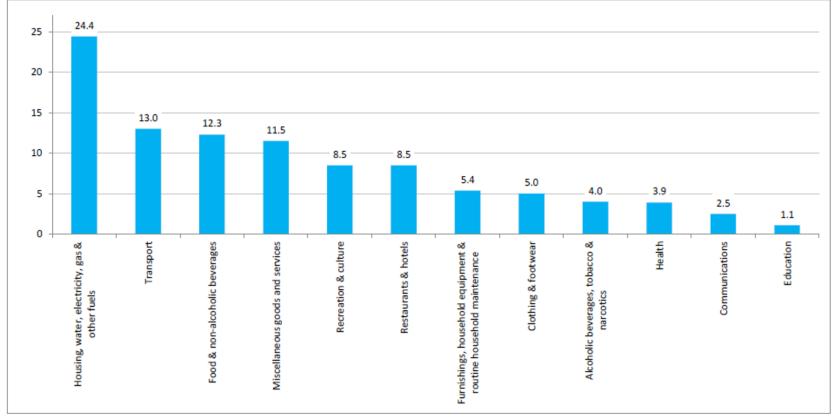
## Method

$$\bullet CF_t = INC_t * s - IC_{er,t} - EC_t - OMC_t$$

*CF*, cash flow of energy related expenses [EUR]; *INC*, household income [EUR/a]; *s*, allocation factor of total annual income on energy related expenses [%]; *IC<sub>er</sub>* energy related investment cost of retrofitting measures [EUR]; *EC*, annual running energy costs [EUR/a]; *OMC*, operation and maintenance costs [EUR/a]

•  $IC_{er,i,t} = \sum_{i} [IC_{tot,i} - (1 - p_{t,i}) * IC_{man,i}] * x_{t,i}$ 


 $IC_{man}$ , maintenance investment cost of renovation measures [EUR]; *x*, binary variable (1 or 0) [-]; *p*, probability of material's aging process [-]; i, building envelope (external wall, window, floor or roof) and active system (heating, cooling, domestic hot water)


• 
$$p_{i,t} = 1 - e^{-\left(\frac{t-t_{i,0}}{t_{i,L}-t_{i,0}}\right)^m}$$
, where t, t<sub>0</sub>, m>0

*p*; probability of material's aging process; *m*, aging exponent [-];  $t_L$ , technical lifetime [a];  $t_O$ , period without failure [a]; *t*, time [a].



# Methods: setting input data







| Retrofitting measure     | Constructive solution                                      | Material specification                         |
|--------------------------|------------------------------------------------------------|------------------------------------------------|
| ROOF INSULATION          | Removing the roof and adding a new layer of insulation     | 30 cm of thermal insulation                    |
| ROOF INSULATION          | Addition of a thermal insulation layer over the last slab  | 15 cm of thermal insulation                    |
| EXTERNAL WALL INSULATION | External insulation (EIFS System)                          | 10 cm of thermal insulation                    |
| EXTERNAL WALL INSULATION | External insulation (EIFS System)                          | 20 cm of thermal insulation                    |
| FLOOR INSULATION         | Installation of insulation in the outer of the floor slabs | 10 cm of thermal insulation                    |
| FLOOR INSULATION         | Installation of insulation in the outer of the floor slabs | 15 cm of thermal insulation                    |
| WINDOW REPLACEMENT       | Improve the thermal quality of the window                  | Double glass with air cavity and a low-e glass |
| ACTIVE SYSTEM            | Generation system replacement                              | Air heat pump + other advices                  |
| RENEWABLE                | PV panels installation                                     | Panels + other advices                         |



| Middle<br>material's life<br>time | Building<br>element | Building's material                 | until<br>1918 | 1919-<br>1948 | 1949 -<br>1957 | 1958 -<br>1968 | 1969 -<br>1978 | 1979 -<br>1983 | 1984 -<br>1994 | 1995 -<br>2001 | 2002-<br>2009 |
|-----------------------------------|---------------------|-------------------------------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|
|                                   |                     | Construction year:                  | 1890          | 1935          | 1955           | 1965           | 1975           | 1980           | 1990           | 2000           | 2005          |
| 20                                | heating             | heating boiler                      | х             | x             | х              | х              | x              | х              | х              | х              | x             |
| 25                                | glazing             | multi glazing                       | х             | х             | х              | х              | х              | х              | х              | х              | х             |
| 30                                | floor               | floor with insulation               |               |               |                | х              | х              | х              | х              | х              | х             |
| 30                                | external wall       | ext wall insulation                 |               |               |                |                | х              |                |                | х              | х             |
| 30                                | roof                | roof insulation                     |               |               |                | х              | х              | х              | х              | х              | х             |
| 60                                | floor               | cellar wood (load bearing)          | х             |               |                |                |                |                |                |                |               |
| 70                                | external wall       | ext wall cement                     |               |               |                |                |                |                | х              |                |               |
| 90                                | external wall       | ext wall brick (load bearing)       | х             | x             | х              | х              |                | х              |                |                |               |
| 100                               | floor               | cellar natural stone (load bearing) |               | х             | х              |                |                |                |                |                |               |
| 120                               | roof                | roof wood chairs                    | х             | х             | х              |                |                |                |                |                |               |



### Substituir

## **Pre-analysis**

## Relevant parameters: building element's material and it's lifetime

## Y=yes, the building element has the corresponding building material

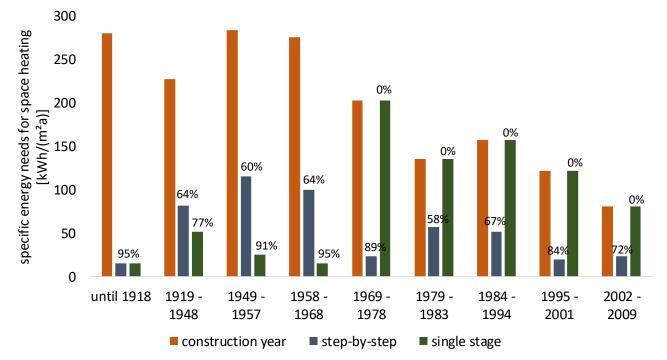
#### N=no, the building element does not have the corresponding building material

| Building<br>element | Building material            | Material's<br>lifetime<br>[yr] | until<br>1918 | 1919-<br>1948 | 1949 -<br>1957 | 1958 -<br>1968 | 1969 -<br>1978 | 1979 -<br>1983 | 1984 -<br>1994 | 1995 -<br>2001 | 2002-<br>2009 |
|---------------------|------------------------------|--------------------------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|
| windows             | multi glazing                | 25                             | У             | У             | У              | У              | у              | у              | У              | у              | У             |
| floor               | insulation                   | 30                             | n             | n             | n              | у              | у              | у              | у              | у              | У             |
| external wall       | insulation                   | 30                             | n             | n             | n              | n              | у              | n              | n              | у              | У             |
| roof                | insulation                   | 30                             | n             | n             | n              | у              | у              | у              | у              | у              | У             |
| floor               | wood (load bearing)          | 60                             | У             | n             | n              | n              | n              | n              | n              | n              | n             |
| external wall       | cement                       | 70                             | n             | n             | n              | n              | n              | n              | у              | n              | n             |
| external wall       | wood                         | 70                             | n             | n             | n              | n              | n              | n              | n              | n              | n             |
| windows             | single glazing               | 80                             | n             | n             | n              | n              | n              | n              | n              | n              | n             |
| external wall       | brick (load bearing)         | 90                             | у             | у             | у              | у              | n              | у              | n              | n              | n             |
| roof                | cement reinforced            | 100                            | n             | n             | n              | n              | n              | n              | n              | n              | n             |
| floor               | natural stone (load bearing) | 100                            | n             | у             | у              | n              | n              | n              | n              | n              | n             |
| roof                | wood chairs                  | 120                            | У             | У             | У              | n              | n              | n              | n              | n              | n             |

Table 1: Characterization of the reference buildings - building elements, building material and material lifetime (for each building vintage, a reference buildings for single family houses in Germany).

Source: own table, based on (TABULA and EPISCOPE project, 2016) and (Pfeiffer et al., 2010)

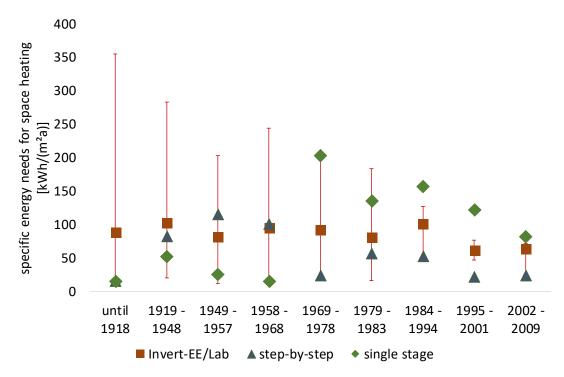



Year of the last renovation step (step-by-step and single stage concept)

| Building vintage                        |                          | until<br>1918 | 1919 -<br>1948   | 1949 -<br>1957   | 1958 -<br>1968   | 1969 -<br>1978   | 1979 -<br>1983   | 1984 -<br>1994   | 1995 -<br>2001   | 2002 -<br>2009   |
|-----------------------------------------|--------------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Construction year of reference building |                          | 1890          | 1935             | 1955             | 1965             | 1975             | 1980             | 1990             | 2000             | 2005             |
| Step-by-step                            | Roof                     | 2040          | no<br>renovation | no<br>renovation | 2025             | 2035             | 2040             | 2050             | 2030             | 2035             |
|                                         | Floor                    | 2040          | 2035             | no<br>renovation | 2025             | 2035             | 2040             | 2050             | 2030             | 2035             |
|                                         | External Wall            | 2040          | 2025             | 2045             | no<br>renovation | 2035             | 2050             | no<br>renovation | 2030             | 2035             |
|                                         | Window                   | 2040          | 2035             | 2030             | 2040             | 2050             | 2030             | 2040             | 2050             | 2035             |
| Single stage                            | all building<br>elements | 2050          | 2015             | 2035             | 2045             | no<br>renovation | no<br>renovation | no<br>renovation | no<br>renovation | no<br>renovation |

Table 3: Last renovation year

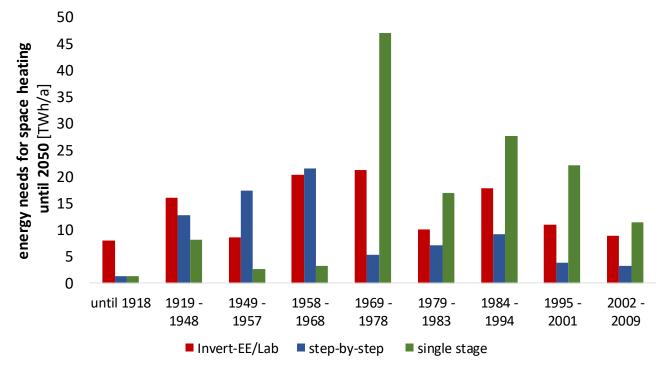



- Specific energy needs in kWh/(m<sup>2</sup>a) of the construction year and after renovation: step-by-step and single stage concepts (for each building vintage)
- Energy savings (%) based on the energy demand in the construction year



Graph 2: Energy needs (before and after renovation) and energy savings according to both step-by-step and single stage concept, for each building vintage




- Specific energy needs for space heating in kWh/(m<sup>2</sup>a) with step-by-step concept, single stage concept and model Invert/EE-Lab
- Reference building based on the construction year



Graph 3: comparison of specific energy needs for space heating in kWh/(m<sup>2</sup>a) between step-by-step concept, single stage concept and Invert/EE-Lab model, for a reference building of each building vintage (before 1918 until 2009)



- The total energy needs for space heating in TWh/a in 2050:
  - 122 TWh/a (Invert-EE/Lab)
  - 81 TWh/a (step-by-step)
  - 140 TWh/a (single stage)



Graph 4: comparison of total energy needs for space heating TWh/a between step-by-step concept, single stage concept and Invert/EE-Lab model, for each building vintage



# Conclusion

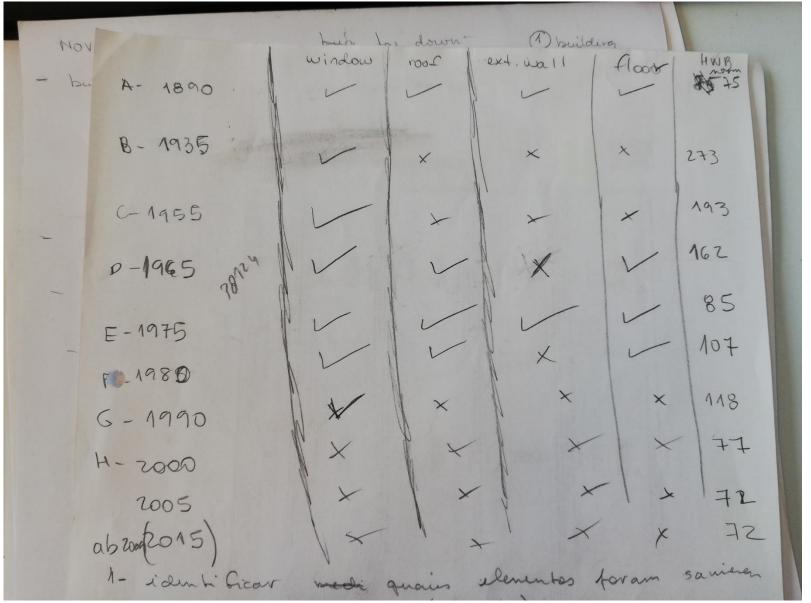
## Period of time to complete first renovation cycle according to materials lifetime:

- non-insulated building elements need longer period to perform the first renovation cycle-> because of insulation lifetime (25-30 years)
- after the first renovation cycle was completed, the subsequent renovation cycles happen more frequently

### Comparison between both concepts:

- step-by-step concept: faster adaptation of the building elements to the building code in force as
  insulated building elements need shorter period of time to perform the next renovation cycle than
  non-insulated ones
- single stage concept: building element might not have reached its end-of-life by the time of renovation and building's energy performance remains constant over a longer period of time

## Upscale and comparison with Invert-EE/Lab (SET-Nav Scenario):


- distribution of buildings, in terms of number of buildings and their different energy needs, becomes a relevant parameter
- step-by-step and single-stage present plausible results when compared to the Invert-EE/Lab Model
- the step-by-step approach resulted in lower energy demand than the single stage approach (comparison until 2050)



# Limitations and next steps

- Limitations
  - reference buildings (described according to the chosen database)
  - further: sensitivity analysis
    - reduced or increased time intervals between renovation in the single-stage concept
    - limited information in old building codes for existing buildings
    - we assume that in the future, benchmarks for existing buildings will follow the same threshold as for new buildings
  - choice of the step-by-step renovation measures -> renovation packages
- Next steps
  - integration of replacement of heating systems with hot water preparation;
  - considering a more realistic distribution of the building elements' lifetimes, e.g. by using a Weibull distribution (as also done in the model Invert/EE-Lab);
  - empirical evaluation of the historical renovation cycles;
  - economic assessment:
    - include accurate estimation of investment costs
    - include investment costs as decision parameter for a deep renovation
    - economic consequences of not reaching materials end-of-life should be taken into account (rest-value of material)







|             | until 1918                        | 1919 - 1948                                                                            | 1949 - 1957                                                                                                         | 1958 - 1968                                                                                                                                       | 1969 - 1978                                                                                                                                                                                                           | 1979 - 1983                                                                                                                                                                                                                                                 | 1984 - 1994                                                                                                                                                                                                                                                                                                                                             | 1995 - 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2002 - 2009                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-----------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [kWh/(m²a)] | 280                               | 227                                                                                    | 284                                                                                                                 | 275                                                                                                                                               | 203                                                                                                                                                                                                                   | 135                                                                                                                                                                                                                                                         | 157                                                                                                                                                                                                                                                                                                                                                     | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81                                                                                                                                                                                                                                                                                                                                                                            |
| [kWh/(m²a)] | 15                                | 82                                                                                     | 115                                                                                                                 | 100                                                                                                                                               | 23                                                                                                                                                                                                                    | 57                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                            |
| [kWh/(m²a)] | 15                                | 52                                                                                     | 25                                                                                                                  | 15                                                                                                                                                | 203                                                                                                                                                                                                                   | 135                                                                                                                                                                                                                                                         | 157                                                                                                                                                                                                                                                                                                                                                     | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81                                                                                                                                                                                                                                                                                                                                                                            |
| [%]         | 95                                | 64                                                                                     | 60                                                                                                                  | 64                                                                                                                                                | 89                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                      | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                                                                                                                                                                                                                                                                                                                                                                            |
| [%]         | 95                                | 77                                                                                     | 91                                                                                                                  | 95                                                                                                                                                | 0                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                             |
|             | [kWh/(m²a)]<br>[kWh/(m²a)]<br>[%] | [kWh/(m²a)]     280       [kWh/(m²a)]     15       [kWh/(m²a)]     15       [%]     95 | [kWh/(m²a)]     280     227       [kWh/(m²a)]     15     82       [kWh/(m²a)]     15     52       [%]     95     64 | [kWh/(m²a)]     280     227     284       [kWh/(m²a)]     15     82     115       [kWh/(m²a)]     15     52     25       [%]     95     64     60 | [kWh/(m²a)]       280       227       284       275         [kWh/(m²a)]       15       82       115       100         [kWh/(m²a)]       15       52       25       15         [%]       95       64       60       64 | [kWh/(m²a)]       280       227       284       275       203         [kWh/(m²a)]       15       82       115       100       23         [kWh/(m²a)]       15       52       25       15       203         [%]       95       64       60       64       89 | [kWh/(m²a)]         280         227         284         275         203         135           [kWh/(m²a)]         15         82         115         100         23         57           [kWh/(m²a)]         15         52         25         15         203         135           [%]         95         64         60         64         89         58 | [kWh/(m²a)]         280         227         284         275         203         135         157           [kWh/(m²a)]         15         82         115         100         23         57         52           [kWh/(m²a)]         15         52         25         15         203         135         157           [kWh/(m²a)]         15         52         25         15         203         135         157           [%]         95         64         60         64         89         58         67 | [kWh/(m²a)]       280       227       284       275       203       135       157       122         [kWh/(m²a)]       15       82       115       100       23       57       52       20         [kWh/(m²a)]       15       52       25       15       203       135       157       122         [%]       95       64       60       64       89       58       67       84 |

