Business-models of gravel, cement and concrete producers in Switzerland and their relevance for resource management and economic development on a regional scale

Ronny Meglin
Daniel Kliem
Alexander Scheidegger
Prof. Dr. Susanne Kytzia

Graz, 12.09.2019
High construction activity and limited resources call for circular economy!
Research Questions (general)

“Co-Evolution of Business Strategies in Material and Construction Industries and Public Policies”

Research project funded by the Swiss National Science Foundations (2017-2021).

Guiding research questions:

• What are the central co-evolution mechanisms driving alternative business models and regulation in the Swiss construction industry?
• How can this co-evolution process be directed towards sustainability?
“Co-Evolution of Business Strategies in Material and Construction Industries and Public Policies”

Ronny Meglin
SBE 19, Graz
12.09.2019
Research Questions

- Can the success of alternative business models be explained by boundary conditions in the specific markets, in the regional supply of natural resources or incentives from public administration?

- If a business model is considered favorable in the transition towards a circular economy, can it be transferred from one region to another without losing its economic benefits?

- How does such a transition towards alternative business models affect regional resource consumption, emissions and value added on regional scale?
How to assess an industry?

Environmental Extended Input-Output-Tables
- environmental impact: global warming potential GWP 100 years, kg CO$_2$ eq
- economic impact: value added VA in CHF/a

Material-Flow-Analysis (MFA)
(data from existing models; case studies)

Life-Cycle-Assessment (LCA)
for concrete (ecoinvent database)

Prices and costs
(case studies, statistical data)
Which Indicators?

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of virgin gravel/sand extracted</td>
<td>ton per year</td>
</tr>
<tr>
<td>Amount of excavated material deposited</td>
<td></td>
</tr>
<tr>
<td>Amount of recycling materials used for producing construction materials</td>
<td></td>
</tr>
<tr>
<td>Value added</td>
<td>CHF per year</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>kg CO$_2$ eq. per year</td>
</tr>
</tbody>
</table>
MFA of Companies

Company A
"Extraction"

Company B
"Recycling"
Results Companies

<table>
<thead>
<tr>
<th></th>
<th>Change in Value added per ton of concrete</th>
<th>Change in Value added per ton of primary aggregate</th>
<th>Change in Value added per ton of recycling aggregate</th>
<th>Change in GWP per ton of concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[CHF] company A company B</td>
<td>company A company B</td>
<td>company A company B</td>
<td>company A company B</td>
</tr>
<tr>
<td>landfill</td>
<td>3.38 -</td>
<td>5.67 -</td>
<td>-1.30 -</td>
<td>- -</td>
</tr>
<tr>
<td>gravel extraction</td>
<td>7.34 4.83</td>
<td>11.50 6.54</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>production primary aggregates</td>
<td>1.58 7.10</td>
<td>2.47 12.19</td>
<td>- -</td>
<td>3.13 2.82</td>
</tr>
<tr>
<td>production recycling aggregates</td>
<td>2.81 2.60</td>
<td>- -</td>
<td>15.49 14.63</td>
<td>0.69 0.66</td>
</tr>
<tr>
<td>concrete production</td>
<td>19.50 21.60</td>
<td>- -</td>
<td>- -</td>
<td>99.22 99.22</td>
</tr>
<tr>
<td></td>
<td>34.61 36.13</td>
<td>19.64 18.73</td>
<td>14.18 14.63</td>
<td>103.04 102.71</td>
</tr>
</tbody>
</table>
MFA of Model Region «AlpVal»

- Stockchanges [t]
- Flows [t/a]
- gravel sand
- production primary aggregates
- gravel
- concrete
- RC aggregates (high quality)
- cement
- excavation
- sorting excavated material
- other products
- construction waste to landfill
- building stock and terrain

- excavation material with high gravel content
- excavation material to landfill
- production RC aggregates
- gravel for concrete
- gravel pits/Landfill
- RC aggregates (low quality)
- cement
- production primary aggregates
- concrete production
- construction waste to landfill
- 380,400
- 245,600
- 208,000
- 696,000
- 649,000
- 25,600
- 23,000
- -339,600
- 720,000
- 556,000
Results Regions

Scenario A: All concrete and gravel produced in ALPVAL is produced by company A “Extraction”
Scenario B: All concrete and gravel produced in ALPVAL is produced by company B “Recycling”

<table>
<thead>
<tr>
<th></th>
<th>Status Quo</th>
<th>Scenario A</th>
<th>Scenario B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of virgin gravel/sand extracted (tons per year)</td>
<td>720'000.00</td>
<td>656'432.00</td>
<td>402'944.00</td>
</tr>
<tr>
<td>Amount of excavated material deposited (tons per year)</td>
<td>380'400.00</td>
<td>485'264.00</td>
<td>0</td>
</tr>
<tr>
<td>Amount of recycling materials used for producing construction materials (tons per year)</td>
<td>208'000.00</td>
<td>253'280.00</td>
<td>253'280.00</td>
</tr>
<tr>
<td>Value added (CHF per year)</td>
<td>33'948'144.00</td>
<td>34'690'928.00</td>
<td></td>
</tr>
<tr>
<td>Global Warming potential (kg CO2 eq per year)</td>
<td>71'715'840.00</td>
<td>71'486'160.00</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- success of both BM depends on the regional availability of raw materials and the possibility to process/landfill excavated material, but both BMs are economically beneficial ► depends on settlement development / spatial planning

- higher material turnover leads to a higher revenue ► BM so far do not fully decouple this logic but expand their value proposition with additional services such as waste management and logistics.

- effects on resource consumption (virgin material and amount of excavated material deposited) can be significant

- it is essential to identify alternative business models and understand their impact on the production and consumption of primary and secondary resources
THANK YOU FOR YOUR ATTENTION

Ronny Meglin M.Sc.
University of applied sciences Rapperswil
Oberseestrasse 10
CH-8640 Rapperswil
ronny.meglin@hsr.ch

LinkedIn

Supported by the Swiss National Science Foundation (SNSF) within the framework of the National Research Programme “Sustainable Economy: resource-friendly, future-oriented, innovative” (NRP 73)”