

13/09/2019, Graz

Index

	Pág.
1. Introduction	03
2. Procedure followed	06
3. Results	07
4. Conclusions	15

tecnalia Inspiring Business

1. Introduction. Objective.

How the existing methods and tools allow assessing NBS effectiveness to mitigate and/or adapt the urban environments to climate change

Image: Second second

111

Nature Based Solutions for re-naturing cities: knowledge diffusion and decision support platform through new collaborative models*

*This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730468. Topic: SCC-03-2016

2. Procedure followed

Step 1: Climate resilience methodology

Definition of all the features that a climate resilient methodology must cover.

Step 2: Methods selection and characterization

Identification of all the methods and tools that can cover at least one part of the previously defined features.

Step 3: Methods classification

Classification of the methods according to the relevant steps of climate resilience and NBS effectiveness that they cover.

Step 4: Case study

111

Analyze in a practical case study a combination of various of those methods

tecnalia) Inspiring Business

	Climate resilient feature	Climate resilient (sub)feature	Number of methods
Methods identification and characterization (1-2)		Mitigation	8
	Strategy	Adaptation	14
		Mitigation & Adaptation	5
	Climate trends	Air temperature	11
		Rainfall / precipitation	11
		Air quality	9
	Climate threats/impacts	Colder winters, warmer summers	12
		Urban Heat Island	12
		Runoff	12
		Air pollution	13
		Water quality	8
		Wind field	10
	Indicators	Building cooling and heating	9
		energy demand reduction	
		Global warming potential	6
		reduction	
		Primary energy demand reduction	7
		Runoff reduction	11
		Carbon sequestration	5
		External air temperature reduction	10

3. Results (3-8)

	Climate resilient feature	Climate resilient (sub)feature	Number of methods
		Object	15
	Seele	District	17
	Scale	City	17
		Up to the city	15
Methods dentification and characterization (2-2)	Nature Based Solutions	Parks and gardens	15
		Structures associated to urban networks	15
		Structures characterized by food and resources production	13
		Natural and semi-natural water bodies and hydrographic networks	13
		Constructed wetlands and built structures for water management	14
		Green roofs	17
		Urban planning strategies	12
		Works on soil	13
		Vertical structures (Green walls and facades)	15
		Direct human interventions	12
_			

_

3. Results (5-8) 2. Consideration of Assessing urban climate related issues different scales Object, neighbourhood and city Temperatures, rainfall, air quality scales Methods classiffication Analysing all the according to: Assessing NBS 1) RACER stages 2) their suitability to assess from climate trends to NBS From identification of threats to the analysis of NBS effectiveness effectiveness 111 Feasibility to apply the method Data, tools, availability of information... 11 Ξ

3. Results (6-8)

Method	RACER position	Methodology features covered (tot 32)
Envi-MET	1	
Library of Adaptation Option	∠	EnviMET
Design Builder	3	9
EPA Storm Water Management	4	18
wioder (S wivilvi)		Enerkad
Enerkad	5	13
Green Pass	6	23
ΠΑΥŪΚΙ	Ī	20 NEST
NEST	8	14
CITY-CAT	9	
Soil and Water Assessment Tool	10	
(SWAT)		
Climate-ADAPT web platform	11	7
Rayman	12	8
Fault tree analysis (FTA)	13	21
SIRVA	14	26
Simile	15	22
URB-CLIM	16	19
EPESUS	17	22
Enviro-HIRLAM	18	9
PLINIVS models	19	6
IVAVIA	20	27
IPCC projections	#NA	7

tecnalia Inspiring Business

Methods classiffication

according to their suitability to assess from climate trends to NBS effectiveness

 \equiv

3. Results (7-8)

 understanding current situation (climate threats currently affecting the municipality) → already identified by the city.

tecnalia) Inspiring Business

- identify potential future impacts due to the climate change if there is no intervention (BAU) → Made with HAVURI methods.
- built NBS scenarios to try to minimize the potential impacts → developed together with the municipality.
- assess the scenarios → According to ENERKAD, NEST, CityCAT and EnviMET methods.
- select the most suitable NBS solutions according to their effectiveness → according to the results given by the previous methods.

Case Study Donostia/San Sebastian: coastal city located in the north of Spain

4. Conclusions

111

There is a need to connect better mitigation and adaptation information to facilitate the municipalities taking robust decisions regarding the NBS implementation

offectiveness to mitigate and/or to adapt the cities

Scientific community must answer to this demand and must help the municipalities in the decision making processes regarding the most suitable NBS to be implemented.

✓ Data needed for the methods and the treatment of it was similar in some

If the introduction of NBS in the cities is supported the climate change effects will be minimized.

