Willkommen Welcome Bienvenue

Optimization-based planning of local energy systems *Bridging the research-practice gap*

L. Andrew Bollinger

Empa, Urban Energy Systems Laboratory Dübendorf, Switzerland

12.09.2019

sccer | future energy efficient buildings & districts

Optimization-based planning of local energy systems

Centralized or distributed energy production?

Location of the centralized supply plant?

Structure & sizing of the thermal network?

Seasonal heat storage?

Which supply technologies?

Dimensioning of technologies?

Potential contribution of renewable energy?

Rooftop solar PV, Façade PV, or both?

Batteries? How big? Where?

How should the energy be supplied for this site? Electricity, Space heating, Hot water, Cooling, etc.

Conventional approach

The problem

Х

Performance criterion 2 (e.g. Cost)

Performance criterion 1 (e.g. CO2 emissions)

Optimization-based planning Possible technical solutions Performance criterion 2 (e.g. Cost) Х Performance improvement optimal solutions

Performance criterion 1 (e.g. CO2 emissions)

... of local energy systems

Scientific literature

Scientific publications per year – "Energy hub" optimization

120

Methodology

Case studies

Case study	Main industry partner	Size of site (buildings)	Type of site	Location
1	Municipal authority	10-20	Existing	Zürich, CH
2	Local utility	10-20	Greenfield	Gossau, CH
3	Local utility	600	Existing	Baden, CH
4	Engineering consultancy	1000+	Existing	Brig-Glis, CH

Case study

Partners: St. Galler Stadtwerke, Stadtwerke Gossau, Migros Ostschweiz, Hochschule Luzern

Centralized or distributed energy production?

Location of the centralized supply plant?

Structure & sizing of the thermal network?

Seasonal heat storage?

Which supply technologies?

Dimensioning of technologies?

Potential contribution of renewable energy?

Rooftop solar PV, Façade PV, or both?

Batteries? How big? Where?

Case study

Energy demand profiles

Energy supply technologies

	Areal	Netz	Parzelle	Speicher
_	T	Chusanaha	DV Deels	Batterie

3 thermal network scenarios:

- High-temperature network
- Low-temperature network
- Hybrid network

ຍ 	Reversible WP		
Kält	Kältemaschine Rückkühlung	Kältespeicher (Parzelle)	

Missing, inconsistent and erroneous

values in building databases and monitored data required significant manual effort to correct

The intensity and temporal distribution of **industrial energy demands** are often not precisely known, and may be decisive to the optimal supply system

Technology capital/installation costs may

be highly local and context dependent – no good, comprehensive databases exist.

Key learnings Which computational/optimization

methodologies are critical?

Mathadalagy	Case study				
wiethodology	1	2	3	4	
Network optimization		thermal	thermal		
Spatial clustering			density-based		
Temporal decomposition	typical days	typical days	typical days		
Multi-stage optimization	3-stage				
Uncertainty handling	scenarios	scenarios		scenarios	

Holistic, multi-energy optimization-based approach is valuable to the problem owners

Methodologies to **reduce solving time** without compromising solution accuracy are critical

Indicators must align with the perspective and priorities of the problem owner

To adapt the analysis based on stakeholder input

To **facilitate learning on the part of stakeholders** with regard to the value and limitations of the approach and the results

5-6 iterations were typically required

Next steps

Next steps

Thank you for your attention.

andrew.bollinger@empa.ch Empa, Urban Energy Systems Laboratory, Dübendorf, Switzerland