

ASSESSMENT OF URBAN-SCALE POTENTIAL FOR SOLAR PV GENERATION AND CONSUMPTION

Juan Pedrero, Nekane Hermoso, Patxi Hernandez, Iñigo Muñoz, Eneko Arrizabalaga, Lara Mabe, Iñaki Prieto, José Luis Izkara

SBE19 Graz 11-14 September

juan.pedrero@tecnalia.com

ASSESSMENT OF URBAN-SCALE POTENTIAL FOR SOLAR PV GENERATION AND CONSUMPTION

 Description 1. Objective of the study 	Pay. 03	
2. Context & case study definition	04	
3. Methodology	06	
4. Results and conclusions	12	

Dág

Objective of the study

Describe a **method** for evaluating the **potential for PV** production and self consumption for the building stock of a city

Considering:

- Irradiation
- Orientation and shading
- Building energy demand and consumption
- Regulation (self-consumption (shared at building level) and net metering)
- Economic viability

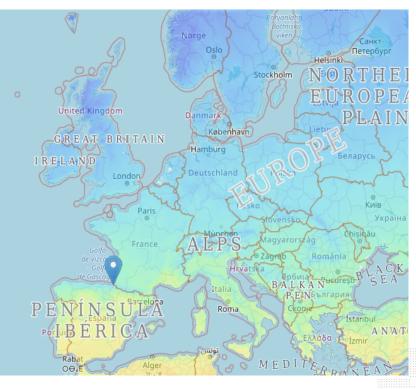
Context & case study definition

Energy consumption in **cities: 60%** to **80%** of the **global energy** use and **increasing**

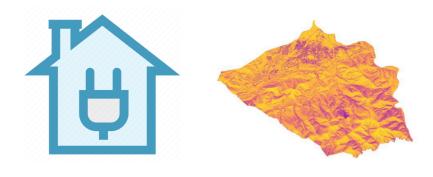
On-site electricity generation potential benefits:

Reduce investment in grid infrastructure

Reduce transport and distribution losses


Reduce GHG emissions

PV→ most **competitive** and **adequate** technology for urban areas


Context & case study definition

- City of **Irun**
- 61.983 inhabitants
- Predominance of 4 to 6 storey building
- Annual solar irradiation: 1.300kWh
- Actively involved in sustainability programs.

Methodology: 4 steps

Building level energy characterization

Solar map for the municipality

Profitability thresholds and rooftop characterization

Size optimization based on legislation model

Methodology: Step 1: Energy Characterization

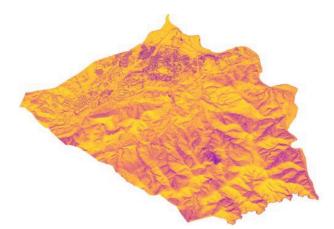
Building energy characterization at city level with **Enerkad**^[1]

Calculation based on the city cadaster and degree day method:

- Construction year
- Geometry

Calculates heating, cooling and electricity demand and energy consumption

[]]


ASSESSMENT OF URBAN-SCALE POTENTIAL FOR SOLAR PV GENERATION AND CONSUMPTION

Methodology: Step 2: Solar map

Calculation of solar irradiation

Considers shading and orography

Based on filtered Digital Surface Model (UMEP plugin for Qgis) and

climatic file and boundary layer of the municipality.

 $\| \, |$

Methodology: Step 3: Profitability threshold and rooftop characterization

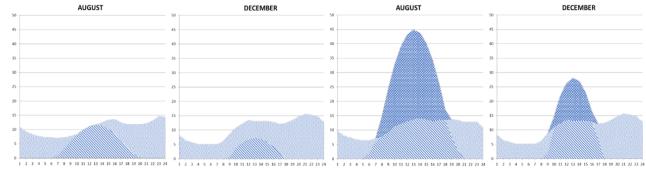
Definition of **irradiance thresholds** associated to **economic performance** and rooftop

characterization

Calculation of the return of investment for a given irradiation threshold

Irradiance threshold (kWh/ m ² year)	Return of investment (years)
1100 (kWh/ m ² year)	<10 years
925 (kWh/ m ² year)	<12 years

10


Methodology: Step 4: Size optimization based on legislation model

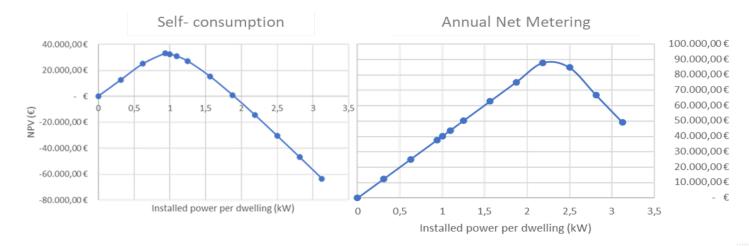
PV **size optimization** based on economic performance and possible legislations

3 case studies

111

- 1. Self consumption (at building level)
- 2. Net metering
- 3. Theoretical maximum potential

PV surplus Grid consumption NPV direct consumption

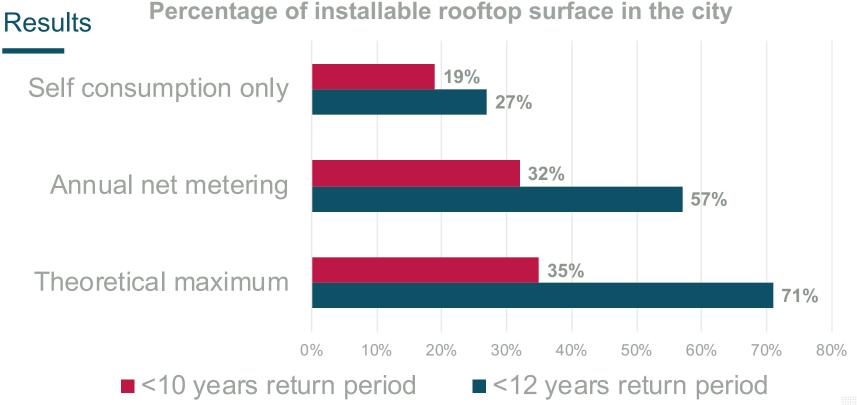


Methodology: Step 4: Size optimization based on legislation model

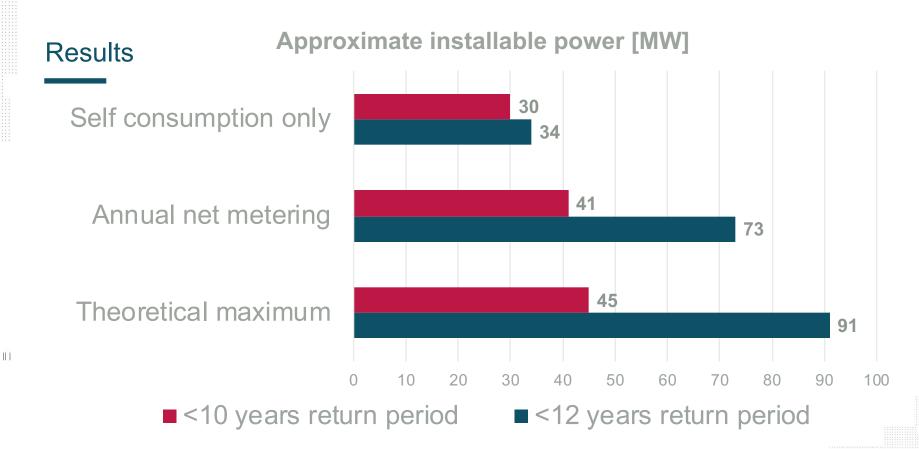
- Self-consumption: 29% of the building demand
- Net metering: 100% of the building demand

III.

• Theoretical maximum potential: 100% available building roof surface



11


g s

12

13

=

Results

Solar power energy share. Percentage of building stock **electricity consumption fed by solar PV.**

Threshold	Theoretical maximum	Self- consumption only	Annual net metering
1100 kWh/m ² .year	32%	17%	29%
925 kWh/m ² .year	59%	24%	48%

Results

Solar power energy share. Percentage of building stock electricity consumption fed by solar PV.

Threshold	Theoretical maximum	Self- consumption only	Annual net metering
1100 kWh/m ² .year	32%	17%	29%
925 kWh/m ² .year	59%	24%	48%

Conclusions

Importance of a **well oriented regulation** for renewable energy integration **Policy makers**

• Possible to understand the impacts of each regulatory framework

Consumers

- Can identify the potential of their own buildings
- Shows a great potential for building integrated PV

Public administration

• Realistic view of PV potential to analyze promotion mechanisms

