

Integration of climate change in life cycle assessment during the use phase of buildings

Delphine Ramon, Karen Allacker

KU Leuven – Department of Architecture – Faculty of Engineering Science

SBE19 Graz September 11th-14th, Graz

Context

Baseline scenario: contributions of life cycle phases to the life cycle impact [Baldassarri et al. 2017]

Fig. 9. Monthly electricity consumption of the house and carbon footprint (CF) of the electricity mixes, for scenario 1B, long-term horizon (2045-2065).

CF electricity average mix

KU LEUVEN

"an approach to LCA which explicitly incorporates dynamic process modelling in the context of temporal and spatial variations in the surrounding industrial and environmental systems" [Collinge et al., 2013]

Dynamic LCA

Based on Collinge et al. (2013), Su et al. (2017) and Negishi et al. (2018)

PhD research

Integrated Life Cycle & Climate modelling

Goal & scope

1) To what extent is climate change currently taken into account?

2) How can climate change be integrated in the life cycle modelling framework?

- changes in operational energy use due to climate change
- changes in operational energy use due to technological evolution or climate regulations
- changes in energy mix (increase of renewable energy) due to climate regulations

Based on a literature review (\pm 30 papers reviewed)

Literature review - highlights

- > Heating demand \downarrow & cooling demand \uparrow
- Change in total demand
 - \sim climate change scenario
 - \sim region
 - \sim time frame
- Importance of electricity
- Importance of cooling system efficiency

Literature review - Discussion

- ➤ Time step
- Holistic approach
- Uncertainties

Discussion – Time steps

Short-term

Long-term

[Roux, C. et al, 2016]

Discussion – Time steps

Multiple time periods

Fig. 1. Life cycle timeframe of the case study.

Year by year evolution

[Roux et al. 2016]

Discussion – Holistic approach

Importance electricity

Fig. 7. Normalised environmental impact of total annual residential gas and electricity consumption in the Netherlands. *[Blom et al. 2011]*

Comparison impact assessment hourly mix (plain line) and yearly average mix (dotted line)

[Roux et al. 2015]

Discussion – Uncertainties

➤ ≠Scenarios

- Climate change
- Energy mix
- Technological evolutions
- Linear vs. non-linear change towards scenario
 - > Goal

Sensitivity analysis ➤ Best & worst case scenario

Conclusion literature review

> Dynamic changes in operational energy use & related impacts of a building

- Climate change
- > Technological evolutions
- Energy mix
- Influence depending on
 - ➢ Region
 - ➤ Time frame
 - Environmental impact indicator
- Recommended
 - ➤ Time step
 - Holistic approach
 - Sensitivity analysis

Thanks! Questions or comments?

