

Technical University Dresden Department of Computer Science Chair of Technical Information Systems

Switching to a holistic perspective on semantic component models in building automation: tapping the full potential of automated design approaches

Bastian Wollschlaeger, Elke Eichenberg, Klaus Kabitzsch bastian.wollschlaeger@tu-dresden.de

SBE19 Graz

Agenda

Design of Building Automation Systems Formal Component Models **Typical Practical Problems** BA-GSem – Graph-based Semantic Component Model **Conclusion & Next Steps**

Bastian Wollschlaeger @ SBE 19, Graz, 12.09.2019 Switching to a holistic perspective on semantic component models in building automation: tapping the full potential of automated design approaches

RCU RCU P RCU M RCU S RCU PS RCU_MS RCU_PSF RCU MSF Bastian Wollschlaeger @ SBE 19, Graz, 12.09.2019 Switching to a holistic perspective on semantic component models in building automation: Folie 3 tapping the full potential of automated design approaches

Design of Building Automation Systems Challenges

Highly complex design process

- Many trades
- Huge number of nodes
- Diversity of technological solutions
 - Many communication technologies
 - Many manufacturers
 - Many devices / device variants available
- Interoperability issues
- \rightarrow Computer-based design tools required for design space exploration

Johnson Controls

kieback@peter siemens

Honeywell Schneider

DHILIPS thermokon[®]

55

Design of Building Automation Systems

Automated Design Approach

Domain Knowledge

- Based on VDI 3813 standard
- Domain functionality modeled as function blocks

Algorithms for System-Synthesis

- Exploration of design space
- Multiple Design Candidates determined based on information flows

automation components

Domain Knowledge

Interconnected Automation System

Result: Multiple Design Candidates

Product Repository

Product Repository

- Formal models of

functionality for

Bastian Wollschlaeger @ SBE 19, Graz, 12.09.2019 Switching to a holistic perspective on semantic component models in building automation: tapping the full potential of automated design approaches

User-

Requirements

Building

Model

Formal Models of Device Functionality General Device Model

Building automation system = network of communicating devices

- Functionality
- Information Exchange

Aspects of Device/Product & Modeling Aim:

- Hardware
 - Physical connections
- Device Application / Software Modules
 → Logical connections
- Semantic Model→ Functionality

Formal Models of Device Functionality Typical Practical Problems

- **1. Consistency** of functionality model
 - "Can a certain functional model be transferred to other device variants?"
 - "Is software 'TemperatureController' usable for a specific device variant?"

Formal Models of Device Functionality Typical Practical Problems

- **1. Consistency** of functionality model
 - "Can a certain functional model be transferred to other device variants?"
 - "Is software 'TemperatureController' usable for a specific device variant?"
- **2. Effort** for model specification & model quality
 - "Does each device variant need a whole functional model?"
 - "Are there implicit constraints for functionality assignment of device variants?" —

Formal Models of Device Functionality

- 3. Limited model **expressiveness**
 - "What is the information flow and processing in the software?"

Formal Models of Device Functionality Typical Practical Problems

Europa fördert Sachsen.

- 1. Consistency of functionality model
 - "Can a certain functional model be transferred to other device variants?"
 - "Is software 'TemperatureController' usable for a specific device variant?"
- 2. Effort for model specification & model quality
 - "Does each device variant need a whole functional model?"
 - "Are there implicit constraints for functionality assignment of device variants?"
- 3. Limited model **expressiveness**
 - "What is the information flow and processing in the software?"
- 4. Heterogeneous model quality
 - "Can the models be used for the engineering task?"

Formal Models of Device Functionality State of the Art

Classification approaches (eCl@ss, ETIM, profiCl@ss)

- Distinguishes device classes
- Focus on isolated aspects (procurement), coarse functionality

Electronic self-description (LON-XIF, KNXPROD)

- Software interface modeled in formal manner
- Technology-specific models, lack detailed semantic information

Preliminary semantic component model [Dibowski2011]

- Technology-neutral semantic component model
- Interface modeled coaresly (software / semantic), no links between aspects
- Monolithic component models

Formal Models of Device Functionality Requirements

1. Precise Modeling

- Offer structures with high level of detail

2. Ease of Specification and Use

- Effort for creation in acceptable magnitude
- Effort for usage in acceptable magnitude

3. Robustness of Use

- Cope with heterogeneous levels of detail

Formal Models of Device Functionality Contributions

1. Precise Modeling

- Offer structures with high level of detail
- → Graph-based semantic model BA-GSem

2. Ease of Specification and Use

- Effort for creation in acceptable magnitude
- Effort for usage in acceptable magnitude
- \rightarrow Identification of important component aspects for modularization

3. Robustness of Use

- Cope with heterogeneous levels of detail
- \rightarrow Discussion of impact on system design tasks

BA-GSem Existing Component Models

Level of Detail: Sem1

— Set of Semantic Functions

Level of Detail: Sem2

- Set of Semantic Functions
- Semantic Type Annotation for Datapoints

BA-GSem Graph-based Semantic Component Model

Level of Detail: Sem3 (BA-GSem)

- Functional Component Model of a Software Module
- ... in context of an operation mode (= parameterization)

Bastian Wollschlaeger @ SBE 19, Graz, 12.09.2019 Switching to a holistic perspective on semantic component models in building automation: tapping the full potential of automated design approaches

Conclusion & Future Work

Recap

- Automated design approaches require functional component models
- Drawbacks of existing component models
 - Isolated aspects
 - High effort
 - Low Expressiveness

Proposal of BA-GSem

- High-expressive graph-based semantic model for BA components
- Contains different aspects & relationships
 → enables modularization

Next steps

- Further reduction of specification effort →
 Tooling support for model specification
- Integration with product information modeling tools

Thank you for your attention!

Bastian Wollschlaeger @ SBE 19, Graz, 12.09.2019 Switching to a holistic perspective on semantic component models in building automation: tapping the full potential of automated design approaches

