

PROCESS MODEL FOR BIM-BASED MEP DESIGN

Presentation – SBE19, Graz

Rainer Partl

12th Sept 2019

Institute of Construction Management and Economics Integrated Building Systems

USTRIAN INSTITUTI

ALLPLAN

Importance of mechanical, electrical and plumbing (MEP) systems in construction projects

- MEP-systems play an important role in complex buildings¹⁾
 - They account usually up to 50% of the project value in high technology, healthcare and biotech industries²)
- Heating, ventilation and air-conditioning systems (HVAC) consumes typically 40 60% of a building's total energy use³⁾
- The complexity of MEP-systems is continuously increasing and the coordination is crucial to project success¹⁾

Source 1): Boktor, J.; Hanna, A.; Menassa, C. (2014): State of Practice of Building Information Modeling in the Mechanical Construction Industry. Volume 30. Hg. v. American Society of Civil Engineers (Issue 1).

Source 2): Riley, D. R., Varadan, P., James, J. S. and Thomas, H. R. (2005) 'Benefit-Cost Metrics for Design Coordination of Mechanical, Electrical, and Plumbing Systems in Multistory Buildings', Journal of Construction Engineering and Management, vol. 131, no. 8, pp. 877–889 Source 3): Teicholz, E., ed. (2001) Facility design and management handbook [Online], New York, NY, McGraw-Hill

FFFG Forschung wirkt.

Research need in the field of MEP

- There is a lack of well-defined process models for BIM collaboration. Moreover, there is a need for practicable descriptions of project requirements and MEP components¹⁾
- Especially for MEP-components in BIM, the requirements of data models is not adequate for open file formats such as Industry Foundation Classes (IFC)²⁾
 - Enumeration in IFC → IfcUnitaryEquipment Consists of singular components e.g., evaporator, compressor, throttle, condenser etc.
 - > This description is unusual and not practical in the MEP planning process

A systematic approach on how to describe data and process models for MEP systems is missing

Source 1) Azhar S 2011 Building Information Modeling (BIM) Trends, Benefits, Risks, and Challenges for the AEC Industry *Leadership and Management in Engineering* 11 no **3 p**p 241-252 Source 2) Yang, X.; Ergan, S. (2014): Towards a Formal Approach for Determining Functions of HVAC Components Represented in International Conference on Computing in Civil and Building Engineering

FFFG

Objective

1) Data set of design relevant parameters

- Process model that outlines the BIM-based design in different design stages
- Example geothermal heat pump with a vertical closed-loop borehole heat exchanger

bm

Result of the data collection

 Overall, 76 parameters relevant to the design phase were identified

SFFG Forschung wirkt.

bm

Definition of the three importance categories

 The rating should help to establish a common sense between all project participants about the priority specific parameters

	Importance category	Criteria for parameters
	High	 Determine the basic requirements for the planning task with the client
		 Required to fulfil the planning task and which are essential for other involved project participants.
		 Relevant for building permission process and important to check the technical equality in the tendering and award process

FFFG

8

Data

set

Definition of the three importance categories

The rating should help to establish a common sense between all project participants about the priority specific parameters

Importance category	Criteria for parameters
High	 Determine the basic requirements for the planning task with the client Required to fulfil the planning task and which are essential for other involved project participants. Relevant for building permission process and important to check the technical equality in the tendering and award process
Medium	 Important for planning tasks and essential for the work progress of a specific project participant (e.g., parameters required by HVAC engineers to dimension a specific component)

Definition of the three importance categories

 The rating should help to establish a common sense between all project participants about the priority specific parameters

Importance category	Criteria for parameters
High	 Determine the basic requirements for the planning task with the client Required to fulfil the planning task and which are essential for other involved project participants. Relevant for building permission process and important to check the technical equality in the tendering and award process
Medium	 Important for planning tasks and essential for the work progress of a specific project participant (e.g., parameters required by HVAC engineers to dimension a specific component)
Low	 required for optional or special tasks (e.g., additional or more detailed simulations, additional documentation etc.).

Data

set

Data

set

Results of the degree of importance

- Parameters with a 'high' degree of importance are predominant in the outline conceptual design phase
 - Impact on the final solution in early design stages

Figure – Distribution of the degree of importance of parameters in each design stage

FFFG

BPMN model of a heat pump for different design stages

- Information flow for the heat pump unit during the planning phase
- Interaction between MEP engineer and the other project participants

Process model

Impact of 2 parameters with a 'high' degree of importance

- Outline conceptual design
 - Geometry
 - Refrigerant

Summary and conclusion

- A data set with 76 geothermal heat pump parameters was compiled by analyzing different information sources.
- BPMN-model of a geothermal heat pump to describe the roles, tasks and responsibilities of involveld stakeholders for different design stages
- The results should improve the collarboration and coordination management of BIM projects in which a geothermal heat pump is used as heating system for the building
 - Relevant for BIM documents (EIR, BEP, IDM etc.)

Acknowledgement

www.metatga.org

μετάTGA

Funded in the framework of the program 'Stadt der Zukunft'

