Impact of dynamic CO₂ emission factors for the public electricity supply on the life-cycle assessment of energy efficient residential buildings

André Müller, M.Sc. & Patrick Wörner, M.Sc.

Specific greenhouse gas emissions of the German electricity mix in g CO₂-eq./kWh
Agenda

1. Introduction and scope
2. Methodology
 a. Dynamic CO₂ emission factors for the German electricity mix
 b. Adaptation of the building LCA method
 c. Modelling of future emission factors
3. Case study
4. Conclusion and outlook
1 Introduction and scope

- Anthropogenic climate change globally threatens the livelihood of millions.

- German *Energiewende* is aiming on the decarbonisation of all sectors of energy consumption by
 - increasing efficiency and/or reducing energy demand, respectively
 - increasing the share of renewable energy sources in power supply, building sector and mobility

- Volatile character of future power generation as well as power demand are increasing

![Graph showing GHG emissions and reduction targets](image)

Source: BMUB (2016): Climate Action Plan 2050; Own illustration
2 Methodology

- The **goal** is the adaptation of established methods for environmental and life-cycle assessment (LCA) to reflect
 - dynamics of future power generation
 - patterns of energy consumption in buildings

- The **basis** is the established LCA for buildings according to the standard DIN EN 15978, for instance as implemented in the DGNB certification

<table>
<thead>
<tr>
<th>Building life cycle</th>
<th>Benefits and loads beyond the system boundary (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product (A1-3)</td>
<td></td>
</tr>
<tr>
<td>Construction (A4-5)</td>
<td></td>
</tr>
<tr>
<td>Use (B1-6)</td>
<td></td>
</tr>
<tr>
<td>End of Life (C1-4)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Own illustration (based on EN 15978)
Dynamic CO$_2$ emission factors for the German electricity mix

- Processing of data on power generation from ENTSO-E transparency platform for 2017 and calibration to federal statistics

- Mix of electricity generation technologies and energy carriers in each time step (temporal resolution: 15 minutes)

Net power generation and load in GW

![Graph showing net power generation and load in GW for Winter and Summer periods.](image)

Source: Wörner et al. (2019): Dynamische CO2-Emissionsfaktoren für den deutschen Strom-Mix
Dynamic CO$_2$ emission factors for the German electricity mix

- Mean specific emissions per unit of electric energy supplied for each energy carrier and plant type from PROBAS database

Specific greenhouse gas emissions of the German electricity mix in g$_{CO2-eq.}$/kWh

Source: Wörner et al. (2019): Dynamische CO2-Emissionsfakten für den deutschen Strom-Mix (Illustration adapted)
Adaptation of the building LCA method

The building LCA is modified regarding the use phase (Module B) to allow for

- a higher time resolution when assessing the energy demand (q_i)
- an implementation of dynamic greenhouse gas emission factors ($f_{GHG,i}$)

\[
q_{GHG,i} = q_i \times f_{GHG,i}
\]

- The calculation of total emissions over lifetime

\[
c_{total} = c_{annual} \times n_{years} = \sum_i c_{GHG,i} \times n_{years}
\]

n_{years}: estimated service life of the building

i: timestep (from 1 to 35,040 for one year)
Modelling of future emission factors

- Future emission factors are calculated on the basis of a 80 % GHG reduction scenario from Gerbert et al. 2018: “Klimapfade für Deutschland“

- Profiles for power generation are derived from 2017 load profiles

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual power generation (in TWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net annual production</td>
<td>619.4</td>
<td>578</td>
<td>627.1</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>39.3</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Wind-Onshore</td>
<td>87.6</td>
<td>136</td>
<td>188</td>
</tr>
<tr>
<td>Wind-Offshore</td>
<td>17.6</td>
<td>63</td>
<td>208</td>
</tr>
<tr>
<td>Biomass</td>
<td>46.7</td>
<td>46.8</td>
<td>36.8</td>
</tr>
<tr>
<td>Other renewable</td>
<td>26.3</td>
<td>27.2</td>
<td>27.3</td>
</tr>
<tr>
<td>Conventional fossil</td>
<td>401.9</td>
<td>235</td>
<td>67</td>
</tr>
<tr>
<td>Consumption weighted annual GHG emission factor for the public electricity supply (in gCO₂-eq./kWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct</td>
<td>524.5</td>
<td>340.6</td>
<td>77.6</td>
</tr>
<tr>
<td>incl. upstream chains</td>
<td>594.1</td>
<td>401.4</td>
<td>119.6</td>
</tr>
</tbody>
</table>

3 Case study

- Residential building model in accordance with German Energy Saving Ordinance (EnEV)*

- Dynamic building simulation using IDA ICE 4.81

*cf. Klauß 2010, Weißmann 2017 for further input parameters

Source: Own illustrations derived from IDA ICE 4.81
Case study

- Simulation gives load profiles and resulting GHG emissions are calculated (temporal resolution: 15 minutes)

- Calculation of the specific GHG emissions of products (A1-3) and the operation phase (B1-7)
Case study

- Comparison of LCA results for
 - 2017, 2030 and 2050 electricity mix
 - static and dynamic LCA approach

Key findings

1) Considerable reduction of GHG emissions

![Graph showing specific GHG emissions for different years and approaches.](source: Own illustration)
Case study

- Comparison of LCA results for
 - 2017, 2030 and 2050 electricity mix
 - static and dynamic LCA approach

Key findings

1. Considerable reduction of GHG emissions
2. Higher GHG emissions when using dynamic GHG emissions factors
3. Increasing assessment gap if share of renewable energy sources increases

Source: Own illustration
4 Conclusion and outlook

- Renewable energy technologies and energy efficient buildings support the achievement of GHG emission reduction targets until 2050
 - GHG emissions of the construction phase must be reduced as well or compensated by other sectors, respectively
 - LCA results based on dynamic demand inputs and emission profiles suggest that an additional effort is necessary to limit climate change

- A higher degree of dynamic inputs may be used to further enhance LCAs and achieve more realistic assessments
 - LCAs with annually decreasing emission factors/profiles in the cause of a buildings’ service life
 - Impact of decarbonisation trends on most important construction materials and building components
Thank you for your attention!

André Müller, M.Sc.
Institute of Concrete and Masonry Structures, Technische Universität Darmstadt
Institute for Housing and Environment, Darmstadt
a.mueller@massivbau.tu-darmstadt.de
a.mueller@iwu.de
Literature

- German Environmental Agency (UBA) 2018 *Prozessorientierte Basisdaten für Umweltmanagementsysteme “PROBAS”* (Dessau-Roßlau, online) http://www.probas.umweltbundesamt.de

- Weißmann C 2017 *Effizienter Einsatz erneuerbarer Energieträger in vernetzten Wohnquartieren* Dissertation (Darmstadt: Institute for Concrete and Masonry Structure, Technische Universität Darmstadt)