Critical analysis of environmental benchmarks for buildings
Trigaux D., Allacker K. and Debacker W.

SBE 19 Graz | 13 September 2019
Content

1. Introduction
2. Literature review existing benchmarks
3. Results critical analysis
4. Conclusions
Content

1. Introduction
2. Literature review existing benchmarks
3. Results critical analysis
4. Conclusions
Life Cycle Assessment in the Belgian building practice
Development of environmental benchmarks for buildings

- **Policy applications**: definition of environmental targets
- **Private / commercial applications**: market positioning
Content

1. Introduction

2. Literature review existing benchmarks

3. Results critical analysis

4. Conclusions
Evaluation aspects

Definition of benchmark values
- Comparative base
- Benchmark approach
- Benchmark typology
- Sources for benchmark

Benchmark scope
- Life cycle stages
- Environmental indicators

Benchmark applications
- Building types
- New construction versus refurbishments

Benchmark communication
Selected benchmarking systems

Regulations

Labelling systems

Sustainability rating tools

Research studies
Content

1. Introduction
2. Literature review existing benchmarks
3. Results critical analysis
4. Conclusions
Comparative base

External benchmark
Representative value for a building category within the building stock

Internal benchmark
Comparison to baseline building
Comparative base

External benchmark
- Comparison with the building stock
- Impact of full design

Internal benchmark
- No building stock modelling
- Limited to impact of material choices
Benchmark approach

Top-down approach
Benchmarks from environmental goals

Bottom-up approach
Benchmarks from building stock analysis
Benchmark approach

Top-down approach

+ Fulfilment with environmental goals
- Availability of targets and allocation procedure

Bottom-up approach

+ Feasible benchmark values
- Availability of data on reference buildings and market variations
Benchmark typology

- **Target value**: Upper value (highest theoretically possible level)
- **Best-practice value**: Value reached in experimental or demonstration projects
- **Reference value**: Average or median value (present state of the art)
- **Limit value**: Lower value (minimum acceptable performance)
Benchmark typology

Medium or long term values

+ Steer towards policy targets
- Might not be feasible for all buildings

Short term values

+ Exclude high environmental impacts
+ Address all stakeholders
- Will not lead to major improvements
- Regular update towards more severe values
Benchmark scope – life cycle stages

<table>
<thead>
<tr>
<th>Life cycle stages</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1-3 Product stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 4-5 Construction process stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1-5 Use stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 1-4 End-of-life stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6 Operational energy use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7 Operational water use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Embodied impact benchmark**
- **Whole life cycle benchmark**
Benchmark scope – life cycle stages

<table>
<thead>
<tr>
<th>Life cycle stages</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1-3 Product stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 4-5 Construction process stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1-5 Use stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1-4 End-of-life stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6 Operational energy use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 7 Operational water use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Embodied impact benchmark
- Only impact of material use

Whole life cycle benchmark
+ Global impact optimization
+ More design flexibility
Benchmark scope – environmental indicators

<table>
<thead>
<tr>
<th>Impact indicators</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone depletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eutrophication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemical ozone creation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>…other indicator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual indicators

Aggregated indicator
Benchmark scope – environmental indicators

<table>
<thead>
<tr>
<th>Impact indicators</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone depletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eutrophication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemical ozone creation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>…other indicator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual indicators

- + Focus on urgent issues
- - Difficult to handle a huge set of indicators

Aggregated indicator

- + Easier to understand and communicate
Benchmark applications – building typologies
Benchmark applications – new construction and refurbishment

Applicable to the whole building stock

1940 1960 1980 2000 2020

Existing buildings

New buildings
Benchmark communication

Communication based on benchmark values

Communication based on performance classes or score
Benchmark communication

Communication based on benchmark values
+ More transparent

Communication based on performance classes or score
+ More user-friendly
Content

1. Introduction

2. Literature review existing benchmarks

3. Results critical analysis

4. Conclusions
Conclusions and further research

- **Combined top-down** and **bottom-up** approach

- Different **performance levels** for short term and long term

- **Flexible benchmark scope**: main benchmark and indicative values

- Application to **most widespread building types, new construction and refurbishments**

- **Transparent and user-friendly communication**: benchmark values and performance classes

- **Further research**
 - Extension to research studies
 - Consultation of policy makers and building stakeholders
Damien Trigaux
Postdoctoral researcher

Department of Architecture, KU Leuven
Kasteelpark Arenberg 1, box 2431, BE-3001 Leuven
Phone: +32 16 321376
damien.trigaux@kuleuven.be

Unit Smart Energy and Built Environment, EnergyVille
EnergyVille I, Thor Park 8310, BE-3600 Genk
Phone: +32 14 335368
damien.trigaux@vito.be