# **Critical analysis of environmental benchmarks for buildings**

Trigaux D., Allacker K. and Debacker W.

SBE 19 Graz | 13 September 2019







# Content

- 1. Introduction
- 2. Literature review existing benchmarks
- 3. Results critical analysis
- 4. Conclusions

## Content

## 1. Introduction

- 2. Literature review existing benchmarks
- 3. Results critical analysis
- 4. Conclusions

# Life Cycle Assessment in the Belgian building practice

# **LCA METHOD EPD DATABASE** Environmental profile of building elements [update 2017] MAKE OVAM totem CREATE | EVALUATE | INNOVATE

## **WEB-BASED TOOL**

# **Development of environmental benchmarks for buildings**

- Policy applications: definition of environmental targets
- Private / commercial applications: market positioning





# Content

## 1. Introduction

- 2. Literature review existing benchmarks
- 3. Results critical analysis
- 4. Conclusions

## **Evaluation aspects**

### **Definition of benchmark values**

- Comparative base
- Benchmark approach
- Benchmark typology
- Sources for benchmark

#### **Benchmark scope**

- Life cycle stages
- Environmental indicators

### **Benchmark applications**

- Building types
- New construction versus refurbishments

### **Benchmark communication**

## Selected benchmarking systems



# Content

- 1. Introduction
- 2. Literature review existing benchmarks

## 3. Results critical analysis

4. Conclusions

## **Comparative base**



## **External benchmark**

Representative value for a building category within the building stock



## Internal benchmark

Comparison to baseline building

## **Comparative base**



## **External benchmark**

- + Comparison with the building stock
- + Impact of full design



## Internal benchmark

- + No building stock modelling
- Limited to impact of material choices

## **Benchmark approach**

All buildings

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40



## **Benchmark approach**



## **Top-down approach**

- + Fulfilment with environmental goals
- Availability of targets and allocation procedure



## Bottom-up approach

- + Feasible benchmark values
- Availability of data on reference buildings and market variations

# **Benchmark typology**



# **Benchmark typology**



## Medium or long term values

- + Steer towards policy targets
- Might not be feasible for all buildings

## Short term values

- + Exclude high environmental impacts
- + Address all stakeholders
- Will not lead to major improvements
- Regular update towards more severe values

# **Benchmark scope – life cycle stages**

| Life cycle stages |                            |   | Type 1 | Type 2 |
|-------------------|----------------------------|---|--------|--------|
| A 1-3             | Product stage              |   |        |        |
| A 4-5             | Construction process stage |   |        |        |
| B 1-5             | Use stage                  |   |        |        |
| C 1-4             | End-of-life stage          |   |        |        |
| B6                | Operational energy use     |   |        |        |
| B7                | Operational water use      |   |        |        |
|                   |                            | - |        |        |

**Embodied impact benchmark** 

Whole life cycle benchmark

# **Benchmark scope – life cycle stages**



17

# **Benchmark scope – environmental indicators**

| Impact indicators            | Type 1 | Type 2 |
|------------------------------|--------|--------|
| Global warming               |        |        |
| Ozone depletion              |        |        |
| Acidification                |        |        |
| Eutrophication               |        |        |
| Photochemical ozone creation |        |        |
| other indicator              |        |        |
|                              |        |        |
| Individual indicators        |        | Aggre  |

# **Benchmark scope – environmental indicators**



- Difficult to handle a huge set of indicators

# **Benchmark applications – building typologies**



# Benchmark applications – new construction and refurbishment





# **Benchmark communication**



# **Benchmark communication**



# Content

- 1. Introduction
- 2. Literature review existing benchmarks
- 3. Results critical analysis
- 4. Conclusions

# **Conclusions and further research**

- Combined top-down and bottom-up approach
- Different **performance levels** for short term and long term
- Flexible benchmark scope: main benchmark and indicative values
- Application to most widespread building types, new construction and refurbishments
- Transparent and user-friendly communication: benchmark values and performance classes
- Further research
  - Extension to research studies
  - Consultation of policy makers and building stakeholders

## **Damien Trigaux** Postdoctoral researcher

Department of Architecture, KU Leuven Kasteelpark Arenberg 1, box 2431, BE-3001 Leuven Phone: +32 16 321376 damien.trigaux@kuleuven.be

Unit Smart Energy and Built Environment, EnergyVille EnergyVille I, Thor Park 8310, BE-3600 Genk Phone: +32 14 335368 damien.trigaux@vito.be





