EHzürich

Using a budget approach for decision-support in the design process

A. Hollberg^{1,3}, T. Lützkendorf², G. Habert¹

- ¹ Chair of Sustainable Construction, ETH Zurich, Switzerland
- ² Institute of Sustainable Management of Housing and Real Estate, KIT, Germany
- ³ Computational Sustainable Design group, Chalmers university, Sweden

Environment-related questions during the design process

"This building is responsible for a Global Warming Potential of 1'002'500 kg CO_2 -equivalent over the next 50 years"

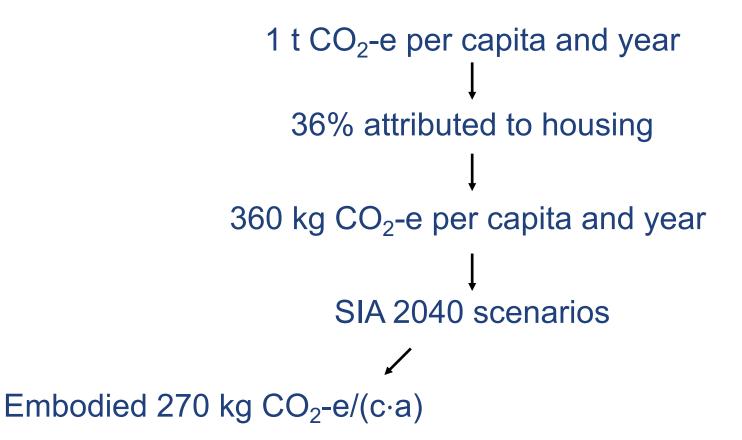
Environment-related questions during the design process

- 1. Is is good ?
- 2. Is it enough?
- 3. How can we improve the environmental performance of the building through material and construction design choices?

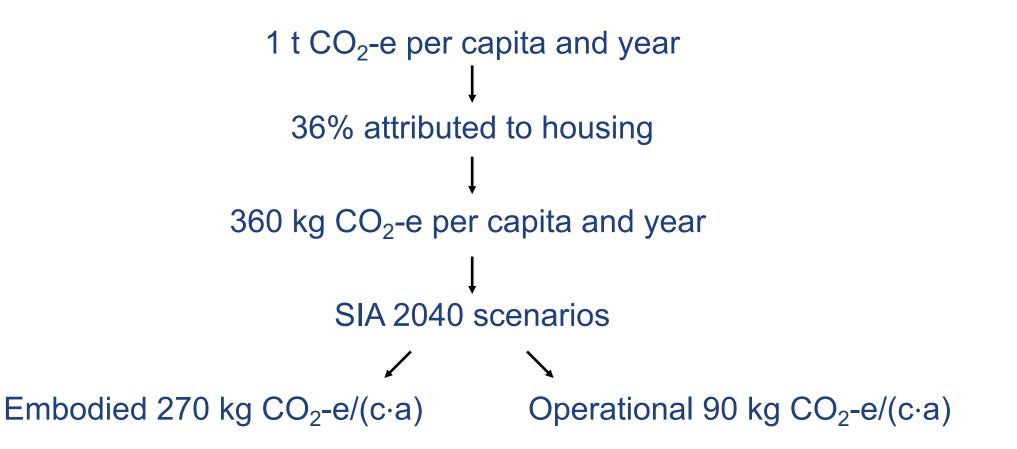
1 t CO₂-e per capita and year

1 t CO₂-e per capita and year
↓
36% attributed to housing

1 t CO_2 -e per capita and year \downarrow 36% attributed to housing \downarrow 360 kg CO_2 -e per capita and year



1 t CO_2 -e per capita and year \downarrow 36% attributed to housing \downarrow 360 kg CO_2 -e per capita and year \downarrow SIA 2040 scenarios



18 people are supposed to live inside...

	GWP [kg CO ₂ -e/a]
Embodied	4860
Operation	1620
Total	6480

Top-down benchmark

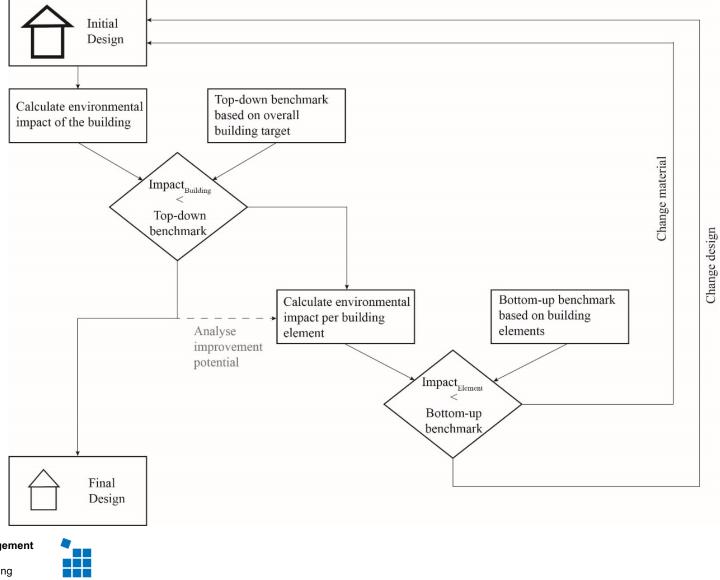
Actual building

Total	6480
Operation	1620
Embodied	4860
	GWP [kg CO ₂ -e/a]

	GWP [kg CO ₂ -e/a]
Embodied	5518
Operation	2073
Total	7591

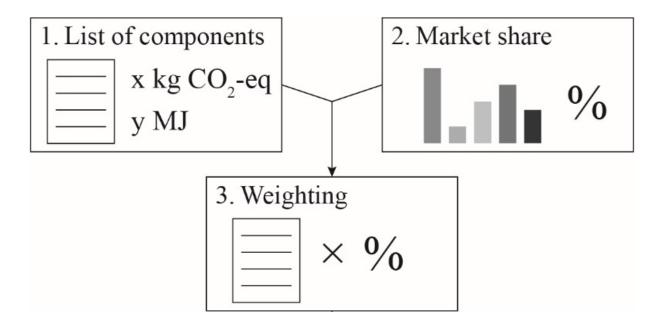
Top-down benchmark

Actual building

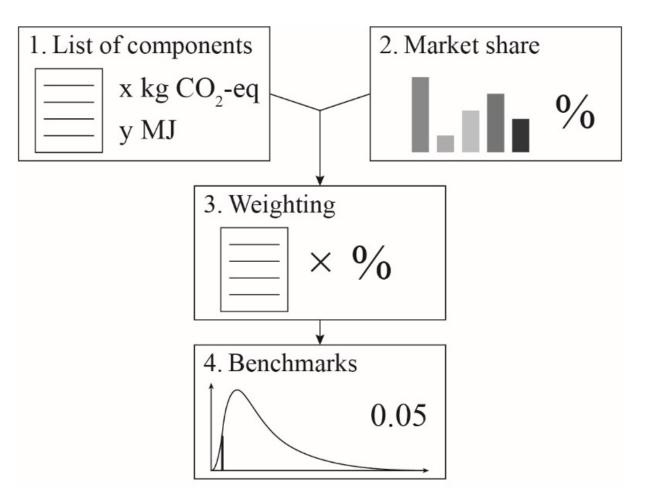

Total	6480
Operation	1620
Embodied	4860
	GWP [kg CO ₂ -e/a]

	GWP [kg C0	D₂-e/a]
Embodied		5518
Operation		2073
Total	+15%	7591

Method


Alexander Hollberg | 19.09.19 | 13

1. List	of components
	x kg CO_2 -eq
	y MJ



BAUTEILKATALOG.CH

HOME INFORMATIONEN FUNKTIONEN MY BAUTEILKATALOG.CH KATALOGE

	ANSICHT		IGSGRÖSSE	AUSGABE	BAUTEILSUCH		RECHN				ETZEN	QS
E2.2	2			Aussenwärme	dämmung						-	
MB2	2032_042			Wärmeverbun	dsystem, WD Aussen	putz					-	
Aus	führung			Steinwolle, p	100 [kg/m3], d 0.18 m,	λ 0.04 W	/mK					
Bes	chrieb											
Bau	teiltyp											
C	- Energie								12		-	
	ue Energie n² a, KBOB/eco-bau/IF	B Version: 201		15.12							-	
MJ/ı	-	PB Version: 201		15.12 Lambda	Amortisationszeit	Masse	Erstell	ung	Entsorg	gung	Total pro	Jahr
MJ/ı	m² a, KBOB/eco-bau/IF	PB Version: 201	8-in Bearbeitung		Amortisationszeit	Masse kg/m²	Erstell MJ/m²	ung %	Entsorg MJ/m ²	gung %	Total pro MJ/m² a	Jahr %
MJ/ı	m² a, KBOB/eco-bau/IF	PB Version: 201	8-in Bearbeitung Schichtdicke	Lambda				-			MJ/m² a	
MJ/ı	n² a, KBOB/eco-bau/IF Material / Schicht		8-in Bearbeitung Schichtdicke m	Lambda W/mK	a	kg/m²	MJ/m² 75.71	% 17%	MJ/m²	%	MJ/m² a 2.54	%
MJ/ı	n² a, KBOB/eco-bau/IF Material / Schicht Kunststoffmörtel		8-in Bearbeitung Schichtdicke m 0.002	Lambda W/mK 0.8	a 30	kg/m² 3.2	MJ/m² 75.71	% 17%	MJ/m ² 0.36	% 7%	MJ/m² a 2.54 9.13	% 17% 60%
MJ/ı	n² a, KBOB/eco-bau/IF Material / Schicht Kunststoffmörtel Steinwolle, ρ 100 [kg/m	3]	8-in Bearbeitung Schichtdicke m 0.002 0.18	Lambda W/mK 0.8 0.04	a 30 30	kg/m² 3.2 18.0	MJ/m² 75.71 269.44	% 17% 60%	MJ/m ² 0.36 4.39	% 7% 79%	MJ/m² a 2.54 9.13 2.54	% 17%
MJ/ı	m² a, KBOB/eco-bau/IF Material / Schicht Kunststoffmörtel Steinwolle, ρ 100 [kg/m Kunststoffmörtel	3]	8-in Bearbeitung Schichtdicke 0.002 0.18 0.002	Lambda W/mK 0.8 0.04 0.8	a 30 30 30	kg/m² 3.2 18.0 3.2	MJ/m² 75.71 269.44 75.71	% 17% 60% 17%	MJ/m ² 0.36 4.39 0.36	% 7% 79% 7%	MJ/m² a 2.54 9.13 2.54 0.41	% 17% 60% 17%

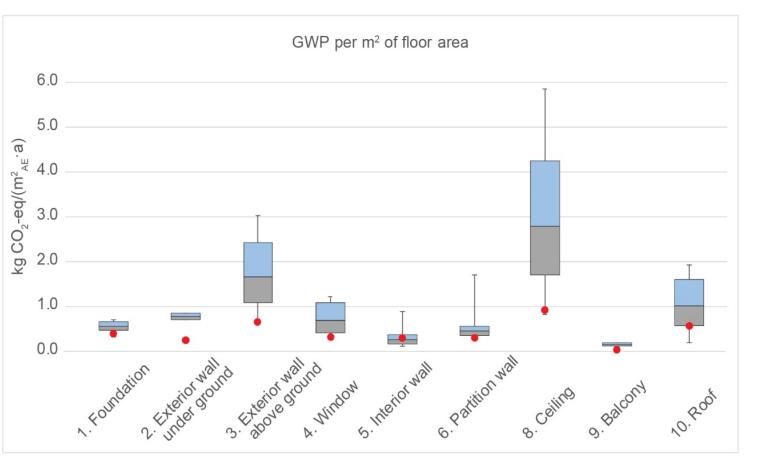
Bauteilkatalog.ch

Institute of Construction & Infrastructure Management Chair for Sustainable Construction Dept. of Civil, Environmental & Geomatic Engineering

W wüestpartner

Wüest & Partner AG

Minimum, maximum, weighted mean and target values (0.05 quantile) for GWP for the building elements.


Building element	Sample size	Reference unit	GWP [kg C	GWP [kg CO ₂ -e/(unit·a)]				
			Min.	W. mean	Max.	Target (0.05)		
1. Base slab	80	m ² _{element}	1.32	2.23	2.82	1.87		
2. Exterior walls underground	3	$m^2_{element}$	3.52	3.72	3.87	3.35		
3. Exterior walls aboveground	404	$m^2_{element}$	0.82	2.11	3.82	1.37		
4. Windows	16	$m^2_{element}$	1.49	3.16	5.57	1.85		
5. Interior walls	35	$m_{element}^2$	0.59	1.28	4.46	0.82		
6. Partition walls	30	m ² _{element}	0.58	1.05	3.97	0.83		
7. Columns	7	piece	1.29	6.04	11.76	1.91		
8. Ceilings	1260	$m_{element}^2$	0.66	2.24	4.69	1.37		
9. Balconies	4	$m^2_{element}$	1.2	1.48	1.76	1.13		
10. Roof	273	$m^2_{element}$	0.79	4.05	7.71	2.32		
11. Technical equipment ^a	29	m_{AE}^2	1.18	-	3.36	1.18*		

^a Due to a small number of solutions in the building component catalogue, no benchmark is calculated, but the minimum is used. The target value is the sum of minimum values for electric equipment, heat generation, heat distribution and delivery, ventilation equipment and water (sanitary) equipment of residential buildings.

Architectural element	GWP [kg CO ₂ - eq/(m²·a)]			
	0.05	min	actual	
1. Base plate / foundation	304	301	383	
2. Exterior wall under ground	614	644	241	
3. Exterior wall above ground	1295	592	619	
4. Window	372	298	298	
5. Interior wall	154	108	285	
6. Partition wall	326	226	278	
7. Column	0	0	0	
8. Ceiling	1558	749	903	
9. Balcony	102	108	42	
10. Roof	529	181	538	
11. Technical equipment*	939	939	1222	
Sum	6193	4145	4809	
/ AE	6.8	4.5	5.3	

sustainable construction

7

- «Is good good enough?»
- Target values for embodied according to SIA 2040 / 1 t CO2 per capita society

Case study results

A _E per	PEnr	GWP		0.05	min	actual
person	[MJ/(m² _{AE} ·a)]	[kg CO ₂ -eq/(m ² _{AE} ·a)]	GWP [kg CO ₂ -eq/(m ² ·a)]	6.8	4.5	5.3
60 m ²	27.0) 4.5	PEnr [MJ/(m²·a)]	83.3	62.1	82.6

- «Is good good enough?»
- Target values for embodied according to SIA 2040 / 1 t CO2 per capita society

Case study results

A _E per	PEnr	GWP		0.05	min	actual
person	[MJ/(m² _{AE} ·a)]	[kg CO ₂ -eq/(m ² _{AE} ·a)]	GWP [kg CO ₂ -eq/(m ² ·a)]	6.8	4.5	5.3
60 m ²	27.0	4.5	[kg CO ₂ -eq/(m a)] PEnr			
45 m ²	36.0	6.0	[MJ/(m ² ·a)]	83.3	62.1	82.6

Problem statement and goal

- LCA results are difficult to interpret for designers and clients
- Current benchmarks on building level cannot indicate improvement potential
- Benchmarks on element level are needed
- Database with LCA results for many buildings on element level is missing (big data)

Conclusion

- Method works well for elements with more than 10 standard components
- Limitations regarding innovative constructive solutions
- Market share approach can be used as long as wide building LCA database is not available

- Application in other national contexts
- Integration in building LCA tools for the design phase

Building and Environment 153 (2019) 148-157

Contents lists available at ScienceDirect

Building and Environment

Top-down or bottom-up? – How environmental benchmarks can support the design process

Alexander Hollberg^{a,*}, Thomas Lützkendorf^b, Guillaume Habert^a

^a Institute of Construction and Infrastructure Management, Chair of Sustainable Construction, Swiss Federal Institute of Technology(ETH Zurich), Stefano Franscini Platz 5, 8093, Zurich, Switzerland

^b Centre for Real Estate, Department of Economics, Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany

ARTICLE INFO

ABSTRACT

Keywords: Life cycle assessment Benchmarks Greenhouse gas emissions Climate targets Environmental design Buildings are responsible for a large share of greenhouse gas (GHG) emissions. The use of Life Cycle Assessment (LCA) during the design phase can help to improve the environmental performance of buildings. However, designers and clients find it difficult to set environmental performance targets and interpret the results obtained through LCA in order to improve the building design. Therefore, reference values or benchmarks are needed. Current available LCA-based benchmarks have mostly been developed for certification systems on whole building level and do not provide design guidance on material or element level. To close this gap, this paper introduces an alternative approach that supports the design process by providing guidance and encouraging to improve the environmental performance. The aim of this approach is to support exploiting the optimization potential particularly regarding the embodied GHG emissions related to the manufacturing of construction products and to the construction, maintenance and demolition of the building. The concept consists in combining top-down benchmarks per capita derived from the capacity of the global eco system with bottom-up reference values for building components that are defined based on a statistical best-in-class approach (top 5%) using the market share of different construction products. Benchmarks for GHG emissions for new residential buildings in Switzerland are discussed. The results of applying the dual benchmark approach to a case study show that it can facilitate the use of LCA-based tools for design support and promote the optimization of the building-related environmental performance.

https://doi.org/10.1016/j.buildenv.2019.02.026

Check for updates

"If less is more, maybe nothing is everything."

Place Léon Aucoc, Bordeaux, Lacaton & Vassal, 1996.