

Urban heat island

Air temperature at 2m height on 10 Aug. 2013 at 6am

(Credits: APUR|EPICEA, 2014)

Blue-green solutions

Acoustic insulation

Thermal insulation

Stormwater management

Biodiversity

An urban planning issue

- Issues for convincing stakeholders
 (ecosystem services are not properly quantified i.e. the real « performance » of blue-green solutions is unclear)
- Dense cities: lack of space
- Issues related to retrofitting existing buildings (technical regulations, costs, long-term consequences)

How to enhance greening of cities?

Vegetated elastic gridshells

Research questions

- How is vegetation relevant for urban cooling?
- → What are the main mechanisms for mitigating urban heat island effects?
- → How does the spatial arrangement of blue-green solutions influence geophysical fields/human comfort at different scales?

• What are the costs (e.g., material resources, polluting processes) and benefits (ecosystem services, biodiversity) of implementing urban vegetation?

Energy balance and cooling mechanisms

Energy balance:
$$\phi_{abs} = eC \frac{\partial T_s}{\partial t} + \varepsilon \sigma T_s^4 + h_{ch} (T_s - T_{air}) + LE - \lambda \left(\frac{\partial T_s}{\partial z} \right)_{z=e}$$

Energy balance and cooling mechanisms

$$\Phi_{H,vegetation} + \Phi_{H,shade} \stackrel{?}{\leq} \Phi_{H}$$

Elastic gridshells in composite materials: Construction process

Elastic gridshells in composite materials: Construction process

Instrumentation plan

Connecting models

Life cycle assessment

OpenLCA + Ecoinvent 3.2

System boundaries as per NF EN 15804 standards

Life cycle assessment

Impact category	Gridshell	Vegetated gridshell
		(30 years)
Acidification of soils and water (kg SO ₂ eq.)	2.9	3.0
Ozone depletion (kg CFC-11 eq.)	$6.3 \cdot 10^{-5}$	$6.3 \cdot 10^{-5}$
Eutrophication (kg PO ₄ ³⁻ eq.)	0.46	0.47
Photochemical ozone formation (kg ethylene eq.)	0.17	0.17
Air pollution (m ³)	1700	1700
Water pollution (m ³)	$4.8 \cdot 10^5$	$4.9 \cdot 10^5$
Global warming (kg CO ₂ eq.)	690	40
Mineral and fossil resource depletion (MJ)	$1.0 \cdot 10^4$	$1.0 \cdot 10^4$
Non-fossil resource depletion (kg Sb eq.)	$1.4 \cdot 10^{-8}$	$1.4 \cdot 10^{-8}$

Perspectives

- Assessing experimentally the urban cooling provided by one kind of vegetated urban furniture
- Evaluating the geophysical fields by means of CFD models
- Refining costs and benefits attributed to these vegetated structures through their whole life cycle so that this data can be used to establish trade-offs between outdoor thermal comfort and environmental impacts

https://hmco.enpc.fr/

https://navier-lab.fr/

http://thinkshell.fr/en/

julien.cravero@enpc.fr