

Towards the definition of a nZEB cost spreadsheet as a support tool for the design

Roberta Pernetti¹, **Federico Garzia**¹, Giulia Paoletti¹, Tobias Weiss²

¹Institute for Renewable Energy – eurac research, Italy

²AEE INTEC, Austria

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

Initial investment

Calculated yearly energy demand

Life Cycle Cost

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

Data collection

Case studies

02

Life Cycle Cost

Methodology

03

Normalisation

Spreadsheet

Comparative analysis

Results

Sensitivity analysis

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

eurac research

Residential

Data Collection

CRAVEzero nZEB Frontrunner Buildings

Case studies

eurac research

Office

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

eurac research

Main references: ISO 15686-5:2008 + Code of measurement for cost planning

- Phases to be considered
- Brakedown of building elements

$$LCC = \sum_{n=1}^{p} \frac{c_n}{(1+d)^n}$$

LCC = NPV (40 years) for the costs associated to each phase Non-construction cost

Construction

Construction

Construction

Operation

Whole Life Cost
(WLC)

Income

Externalities

Externalities

REF: ISO 15686 - Buildings and constructed assets -- Service life planning -- Part 5: Life-cycle costing EEC Code of Measurement for Cost Planning. https://www.ceecorg.eu/

Main references: ISO 15686-5:2008 + Code of measurement for cost planning

- Phases to be considered
- Brakedown of building elements

$$LCC = \sum_{n=1}^{p} \frac{c_n}{(1+d)^n}$$

LCC = NPV (40 years) for the costs associated to each phase Non-construction cost

| Construction | Constructio

REF: ISO 15686 - Buildings and constructed assets -- Service life planning -- Part 5: Life-cycle costing EEC Code of Measurement for Cost Planning. https://www.ceecorg.eu/

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

Normalisation

Construction costs:

Cost index from http://constructioncosts.eu

Energy costs:

Average prices from Eurostat

Climate conditions:

Heating degree days

Building surface:

Gross floor area

Normalisation

Construction Cost Index				
France	103.87%			
Austria	100.67%	Energy costs:		
Germany	96,62 %	Average prices from Eurostat		
Italy	91,63 %	Average prices from Eurostat		
Sweden	134,19 %			

Heating degree days

Building surface:

Gross floor area

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

Data collection

Case studies

Life Cycle Cost

Methodology

Normalisation

Spreadsheet

05

Comparative analysis

Results

06

Sensitivity analysis

LCC Spreadsheet

CRAVEzero nZEB spreadsheet

General project information

Whole Life Cost

Construction cost

LCC Spreadsheet

CRAVEzero nZEB spreadsheet

Section 1: Investment cost

- Share for design/materials/labour
- Design cost (preliminary, etc.)
- Cost for materials and labour
- Brakedown for building elements

Section 2: Life Cycle Cost

- Yearly LCC
- Brakedown for life cycle phases
- Energy and maintenance

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

European Union funding

Comparative Analysis

Comparative Analysis

Correlation between energy cost and U-value

Construction cost breakdown

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

Data collection

Case studies

02

Life Cycle Cost

Methodology

03

Normalisation

Spreadsheet

Comparative analysis

Results

Sensitivity analysis

Sensitivity Analysis

Case study: Résidence Alizari

Figure 1. Sensitivity index (s%) of boundary and assumptions – Résidence Alizari.

Min ---- Baseline

Figure 2. LCC variability according to the variations of boundaries and assumptions – Résidence Alizari.

Conclusions and Further Development

- An operative methodology for an EU-wide evaluation of life cycle cost.
- Overview of the main results for 11 exemplary case studies was reported...
- ...providing useful benchmarks for nZEB comparison and increasing the reliability of LCC.

- o Starting point for the development of an effective LCC tool (beta version available at cravezero.eu).
- The broad application of the LCC analysis can foster the market uptake of nZEBs, highlighting the cost-effectiveness and benefits during the life cycle.

€ CRAVE**ZETO**

Thank

federico.garzia@ eurac.edu

www.cravezero.eu

eurac research

Meeting

References

- o EPBD recast-European Commission. Energy Performance of Buildings Directive 2010/31. EU of the European Parliament and of the Council of. 2010;19.
- o ISO ISO. 15686-5: Buildings and Constructed Assets-Service-Life Planning-Part 5: Life-Cycle Costing. Geneva, Switzerland: International Organization for Standardization. 2008.
- o CEEC. Code of Measurement for Cost Planning. n.d. https://www.ceecorg.eu/. Accessed July 2018.
- Dwaikat LN, Ali KN. Green buildings life cycle cost analysis and life cycle budget development: Practical applications. Journal of Building Engineering. 2018;18:303–11.
- o Kirk SJ, Dell'Isola AJ. Life cycle costing for design professionals; 1995.
- o FRED Economic Data. Interest Rates, Discount Rate for Euro Area. https://fred.stlouisfed.org/series/INTDSREZQ193N. Accessed July, 2018.
- Feist W, Pfluger R, SCHNEIEDERS J, Kah O, Kaufman B, Krick B, et al. Passive House Planning Package Version 7. Darmstadt: Rheinstrabe, Germany.
 2012.
- o Eurostat. Electricity prices for households in the European Union 2010-2017, semi-annually. http://epp.eurostat.ec.europa.eu. Accessed in July, 2018.
- EN 15459-1:2017 Energy performance of buildings—economic evaluation procedure for energy systems in buildings Part 1: calculation procedure May 2017.
- o European Construction Costs. Cost Index. http://constructioncosts.eu/cost-index/. Accessed July 2018.
- o Ecofys. U-values For Better Energy Performance Of Buildings. https://www.ecofys.com/en/. Accessed July 2018.
- O Di Giuseppe E, Iannaccone M, Telloni M, D'Orazio M, Di Perna C. Probabilistic life cycle costing of existing buildings retrofit interventions towards nZE target: Methodology and application example. Energy and Buildings. 2017;144:416–32.
- o Langdon D. Life cycle costing (LCC) as a contribution to sustainable construction: A common methodology. Literature Review, Davis Langdon Management Consulting. 2007.

eurac research

LCC spreadsheet

CRAVEZero nZEB spreadsheet

	Investment	Design	Preliminary	10 €/m ²		
		192 €/m ²	Definitive	- €/m²		
			Executive	182 €/m²		
				Building Elements	340€/m²	
			Materials	Building Services	197€/m²	
	773 €/m ²	Construction	581 €/m²	RES	44 €/m ²	
		581 €/m²		Other		
			Labor	- €/m²		
			- €/m²			
LCC (40)		Building site management	- €/m²			
1285€/m ²		Energy 146 €/m²		Heating	75 €/m ²	
			Consumed	Cooling	11 €/m ²	
			313 €/m ²	DHW	57 €/m ²	
				Household el.+ aux.	188 €/m²	
	Operation		Produced			
	512 €/m ²		167 €/m ²			
		Maintenance	Envelope	152 €/m ²		
		366 €/m ²	HVAC	201 €/m²		
	-	0.000	RES	13 €/m²		
		Other 0 €/m ²	Normalised gross surface are			

Example Case Study Parkcarré (K&M)

LCC Case Study analysis

Comparative analysis – case studies

Design cost (% - €/m²)

Investment/maintenance €/m²

Investment cost vs. Maintenance cost normalized

LCC Case Study analysis

Comparative analysis – case studies

Breakdown of investment cost for construction element

Construction costs breakdown

