CRAVEzero

Towards the definition of a nZEB cost spreadsheet as a support tool for the design

Roberta Pernetti¹, Federico Garzia¹, Giulia Paoletti¹, Tobias Weiss²

¹Institute for Renewable Energy – eurac research, Italy
²AEE INTEC, Austria
CRAVEzero
Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

Initial investment
Calculated yearly energy demand

Life Cycle Cost
Design
Construction
End-of-Life
Operation
Maintenance

Time dimension

SBE19 – 12. SEPT 2019
CRAVEzero
Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

01 Data collection
Case studies

02 Life Cycle Cost
Methodology

03 Normalisation

04 Spreadsheet

05 Comparative analysis
Results

06 Sensitivity analysis
CRAVEzero

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

<table>
<thead>
<tr>
<th></th>
<th>Data collection</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Case studies</td>
<td>04</td>
<td>Spreadsheet</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Life Cycle Cost Methodology</td>
<td>05</td>
<td>Comparative analysis Results</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Normalisation</td>
<td>06</td>
<td>Sensitivity analysis</td>
<td></td>
</tr>
</tbody>
</table>

CRAVEzero

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

SBE19 – 12. SEPT 2019
Life Cycle Cost

Main references: ISO 15686-5:2008 + Code of measurement for cost planning

- Phases to be considered
- Brakedown of building elements

\[LCC = \sum_{n=1}^{p} \frac{C_n}{(1+d)^n} \]

LCC = NPV (40 years) for the costs associated to each phase

REF: ISO 15686 - Buildings and constructed assets -- Service life planning -- Part 5: Life-cycle costing
Life Cycle Cost

Main references: ISO 15686-5:2008 + Code of measurement for cost planning

- Phases to be considered
- Brakedown of building elements

\[\text{LCC} = \sum_{n=1}^{p} \frac{C_n}{(1+d)^n} \]

LCC = NPV (40 years) for the costs associated to each phase

REF: ISO 15686 - Buildings and constructed assets -- Service life planning -- Part 5: Life-cycle costing
CRAVEzero
Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

01 Data collection
Case studies

02 Life Cycle Cost
Methodology

03 Normalisation

04 Spreadsheet

05 Comparative analysis
Results

06 Sensitivity analysis
Normalisation

Construction costs:
Cost index from http://constructioncosts.eu

Energy costs:
Average prices from Eurostat

Climate conditions:
Heating degree days

Building surface:
Gross floor area
Normalisation

Construction Cost Index

<table>
<thead>
<tr>
<th>Country</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>103.87%</td>
</tr>
<tr>
<td>Austria</td>
<td>100.67%</td>
</tr>
<tr>
<td>Germany</td>
<td>96.62%</td>
</tr>
<tr>
<td>Italy</td>
<td>91.63%</td>
</tr>
<tr>
<td>Sweden</td>
<td>134.19%</td>
</tr>
</tbody>
</table>

Energy costs:
Average prices from Eurostat

Climate conditions:
Heating degree days

Building surface:
Gross floor area
CRAVEzero

Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

01 Data collection
Case studies

02 Life Cycle Cost
Methodology

03 Normalisation

04 Spreadsheet

05 Comparative analysis
Results

06 Sensitivity analysis
LCC Spreadsheet
CRAVEzero nZEB spreadsheet

<table>
<thead>
<tr>
<th>General project information</th>
<th>Whole Life Cost</th>
<th>Construction cost</th>
</tr>
</thead>
</table>

Whole Life Cost

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Sheet 1</th>
<th>Sheet 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Breakdown</td>
<td>Building</td>
<td>HVAC</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>300</td>
</tr>
</tbody>
</table>

Construction cost

<table>
<thead>
<tr>
<th>Cost Item</th>
<th>Sheet 1</th>
<th>Sheet 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>1200</td>
<td>300</td>
</tr>
<tr>
<td>Labor</td>
<td>1200</td>
<td>300</td>
</tr>
</tbody>
</table>

SBE19 – 12. SEPT 2019
Section 1: Investment cost
- Share for design/materials/labour
- Design cost (preliminary, etc.)
- Cost for materials and labour
- Brakedown for building elements

Section 2: Life Cycle Cost
- Yearly LCC
- Brakedown for life cycle phases
- Energy and maintenance
CRAVEzero
Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

01 Data collection
Case studies

02 Life Cycle Cost
Methodology

03 Normalisation

04 Spreadsheet

05 Comparative analysis
Results

06 Sensitivity analysis

SBE19 – 12. SEPT 2019
Comparative Analysis

LCC breakdown

<table>
<thead>
<tr>
<th>Design cost</th>
<th>Labor cost</th>
<th>Maintenance cost</th>
<th>Cost of materials</th>
<th>Net energy consumed</th>
<th>Building site management</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreenHome</td>
<td>Héliades</td>
<td>Alizari</td>
<td>NHTol</td>
<td>Parkcarré</td>
<td>More</td>
</tr>
<tr>
<td>IsolaA</td>
<td>IsolaB</td>
<td>Solallén</td>
<td>VålaGård</td>
<td>Aspen</td>
<td>Schertler</td>
</tr>
</tbody>
</table>

LCC breakdown – average

- **Design**: 32%
- **Construction**: 49%
- **Energy**: 12%
- **Maintenance**: 2%
- **Other**: 5%
- **Building site management**: 0%
Comparative Analysis

Correlation between energy cost and U-value

R² = 0.56

Construction cost breakdown

- Building envelope cost
- Building structure cost
- Building services cost
- RES cost
- Other cost

SBE19 – 12. SEPT 2019
CRAVEzero
Cost Reduction and market Acceleration for Viable nearly zero-Energy buildings

01 Data collection
Case studies

02 Life Cycle Cost
Methodology

03 Normalisation

04 Spreadsheet

05 Comparative analysis
Results

06 Sensitivity analysis
Sensitivity Analysis

Case study: Résidence Alizari

Figure 1. Sensitivity index (s%) of boundary and assumptions – Résidence Alizari.

Figure 2. LCC variability according to the variations of boundaries and assumptions – Résidence Alizari.
Conclusions and Further Development

• An **operative methodology** for an EU-wide evaluation of life cycle cost.

• Overview of the main results for **11 exemplary case studies** was reported…

• …providing useful **benchmarks** for nZEB comparison and increasing the reliability of LCC.

 o Starting point for the development of an effective **LCC tool** (beta version available at cravezero.eu).

 o The broad application of the LCC analysis can foster the market uptake of nZEBs, highlighting the **cost-effectiveness and benefits during the life cycle**.
Thank you!

federico.garzia@eurac.edu

www.cravezero.eu
References

- Kirk SJ, Dell'Isola AJ. Life cycle costing for design professionals; 1995.
- Langdon D. Life cycle costing (LCC) as a contribution to sustainable construction: A common methodology. Literature Review, Davis Langdon Management Consulting. 2007.
LCC spreadsheet

CRAVEZero nZEB spreadsheet

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost 192 €/m²</th>
<th>Cost 773 €/m²</th>
<th>Cost 581 €/m²</th>
<th>Cost 1285 €/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Preliminary</td>
<td>10 €/m²</td>
<td></td>
<td>773 €/m²</td>
</tr>
<tr>
<td></td>
<td>Definitive</td>
<td>- €/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Executive</td>
<td>182 €/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>Building Elements</td>
<td>340 €/m²</td>
<td></td>
<td>581 €/m²</td>
</tr>
<tr>
<td></td>
<td>Building Services</td>
<td>197 €/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>Other</td>
<td>- €/m²</td>
<td></td>
<td>1285 €/m²</td>
</tr>
<tr>
<td>LCC (40)</td>
<td>Building site management</td>
<td>- €/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Consumed</td>
<td></td>
<td>313 €/m²</td>
<td>146 €/m²</td>
</tr>
<tr>
<td></td>
<td>Heating</td>
<td></td>
<td></td>
<td>75 €/m²</td>
</tr>
<tr>
<td></td>
<td>Cooling</td>
<td></td>
<td></td>
<td>11 €/m²</td>
</tr>
<tr>
<td></td>
<td>DHW</td>
<td></td>
<td></td>
<td>57 €/m²</td>
</tr>
<tr>
<td></td>
<td>Household el.+ aux.</td>
<td>188 €/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Produced</td>
<td></td>
<td>167 €/m²</td>
<td>366 €/m²</td>
</tr>
<tr>
<td></td>
<td>Envelope</td>
<td></td>
<td></td>
<td>152 €/m²</td>
</tr>
<tr>
<td></td>
<td>HVAC</td>
<td></td>
<td></td>
<td>201 €/m²</td>
</tr>
<tr>
<td></td>
<td>RES</td>
<td></td>
<td></td>
<td>13 €/m²</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>0 €/m²</td>
</tr>
</tbody>
</table>

Normalised gross surface

Example Case Study Parkcarré (K&M)
LCC Case Study analysis
Comparative analysis – case studies

Design cost (% - €/m²)

Investment/maintenance €/m²

Investment cost vs. Maintenance cost normalized

SBE19 – 12. SEPT 2019
LCC Case Study analysis

Comparative analysis – case studies

Breakdown of investment cost for construction element

Construction costs breakdown