Life-Cycle Costs of a Minimally Invasive Refurbishment Approach in Comparison to a Standard Refurbishment

Daniel Heidenthaler | SBE19 Graz | 12.09.19
Overview

- Project description
- Challenges
- Construction
- Methodology
- Life Cycle Cost
- Conclusion
- Outlook

Source: FH Salzburg
Project description

Refurbishment (and extension) of a residential building with a multifunctional façade

- Conservation of the existing building
- Tenants do not have to be resettled
- Prefabrication
- Newly developed facade system
 - Sound absorption
 - Insulation
 - Heating from outside

Source: FH Salzburg
Challenges

• Social housing
• Erected: 1950s
• Characteristics:
 – High traffic volume
 – Aging inhabitants (60+)
 – Lack of thermal insulation
 – Obsolete heating systems

➢ Refurbishment potential

Source: FH Salzburg
Construction
Methodology

Minimally invasive refurbishment

Component structure

U-Value 0.182 W/m²K
Thickness 81.5-84.5 cm
Heat dissipation Component activation
Methodology

Table 1. Comparison of the selected variants.

<table>
<thead>
<tr>
<th>Component structure</th>
<th>Minimally invasive refurbishment</th>
<th>Standard refurbishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Value</td>
<td>0.182 W/m²K</td>
<td>0.182 W/m²K</td>
</tr>
<tr>
<td>Thickness</td>
<td>81.5-84.5 cm</td>
<td>64.5 cm</td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>Component activation</td>
<td>Radiator</td>
</tr>
</tbody>
</table>
Methodology

Table 1. Comparison of the selected variants.

<table>
<thead>
<tr>
<th>Component structure</th>
<th>Minimally invasive refurbishment</th>
<th>Standard refurbishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Value</td>
<td>0.182 W/m²K</td>
<td>0.182 W/m²K</td>
</tr>
<tr>
<td>Thickness</td>
<td>81.5-84.5 cm</td>
<td>64.5 cm</td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>Component activation</td>
<td>Radiator</td>
</tr>
</tbody>
</table>

Data basis:
- Actual costs
- Obtained offers
- Estimated costs

Tool Lekoecos:
- Danube University Krems, Helmut Floegl
- ÖNORM B 1801-1 & 2
Methodology

Life-cycle costs (LCC) ÖNORM B 1801

Erection costs (ERK) ÖNORM B 1801-1

Construction costs (BAK) ÖNORM B 1801-1
- E1 Development
- Building costs (BWK)
 - E2 Building shell
 - E3 Building technology
 - E4 Building extension
 - E5 Equipment
 - E6 Outside facilities
- E7 Planning services
- E8 Incidental expenses
- E9 Reserves

Follow-up costs (OFK) ÖNORM B 1801-2

Usage costs (ONK) ÖNORM B 1801-2

Costs of building operation (KGB)
- F1 Administration
- F2 Technical building operation
- F3 Supply and disposal
- F4 Cleaning and maintenance
- F5 Safety
- F6 Building services
- F7 Overhaul, modification
- F8 Other
- F9 Object removal, demolition
Selected cost groups of Life Cycle Cost
Selected cost groups of Life Cycle Cost

- Erection costs: 7% gap
 → façade- and heating system (minimal invasive refurbishment)

- Usage costs: 3% gap
 → radiators and plastered façade (standard refurbishment)

- Total difference: 4%
 → equal 36% according to the façade relevant costs
Conclusion

Cost reduction necessary to become economically competitive

Non-monetary added value:

- Minimally invasive approach
- Heat dissipation
- Reduced use of floor space
- Sound absorption
- Wood-based materials

Source: FH Salzburg
Cost reduction and further optimization:

- Building service system
- Façade construction
- Materials
- Control strategy

Source: FH Salzburg
Life-Cycle Costs of a Minimally Invasive Refurbishment Approach in Comparison to a Standard Refurbishment

Authors:
Daniel Heidenthaler, BSc
Salzburg University of Applied Sciences
Smart Building & Smart City
daniel.heidenthaler@fh-salzburg.ac.at

Matthias Gnigler, BSc
Ing. Martin Embacher

DI Markus Leeb
Arch. DI FH Paul Schweizer