Stakeholder related fields of action for process optimization of nearly zero energy and plus energy buildings

Regina Höfler, BSc

AEE - Institute for Sustainable Technologies (AEE INTEC)
8200 Gleisdorf, Feldgasse 19, AUSTRIA
Index

• Introduction

• Problem identification and challenges in the implementation of nZEB and PEB

• Methodology

• Results

• Conclusion
Introduction

Climate change and its consequences:

Building sector:

- 40% of total energy consumption and 30% of greenhouse gas emissions in Europe can be attributed to buildings

=> Solution: nZEB and PEB
Problem identification

Common problems in the implementation of nZEB and PEB:

• focus only on concrete view of stakeholders

• using the same procedures like in projects with lower requirements of energy consumption
Implementation problems

Results of the Mentimeter survey

https://www.mentimeter.com/

What are the main challenges (barriers) to realise a nearlyZEB?

- Lack of communication / documentation: Planner 4, Researcher 33, agree 33, disagree 56
- Too many regulations / lack of support from authorities: Planner 3.3, Researcher 33, agree 33, disagree 56
- Excessively high costs: Planner 3.3, Researcher 33, agree 33, disagree 56
- Lack of knowledge about technologies and costs: Planner 3.3, Researcher 33, agree 33, disagree 56

What is needed for a market uptake of nearlyZEBs?

- More technical knowhow: Planner 3.4, Researcher 3.6, agree 30, disagree 47
- Earlier collaboration of the planning team: Planner 3.8, Researcher 4.1, agree 27, disagree 50
- Strengthened legal binding building requirements: Planner 4.2, Researcher 4.4, agree 27, disagree 50
- Self-sufficient and secure energy supply / system: Planner 3.7, Researcher 3.6, agree 27, disagree 50

Own illustration based on the Mentimeter survey
Implementation problems

Results of the Mentimeter survey https://www.mentimeter.com/

What is the added value of building nearlyZEBs?

- Decentralized energy generation (vs. Centralized)
 - Planner: 5%, Researcher: 12%
 - Life-cycle / future value of the property
 - Planner: 13%, Researcher: 11%
 - Less energy dependency
 - Planner: 16%, Researcher: 18%
 - Lower operational costs
 - Planner: 17%, Researcher: 17%
 - User satisfaction and comfort
 - Planner: 17%, Researcher: 9%
 - Image / role-model
 - Planner: 8%, Researcher: 7%
 - Indoor air quality
 - Planner: 6%, Researcher: 4%
 - Resource saving / climate protection
 - Planner: 22%, Researcher: 23%

Own illustration based on the Mentimeter survey
Methodology

- **Correlations**
 - identify correlations who is responsible

Methodology Diagram

- **Actions**
 - energetic and economic target definition
 - timetable and organization chart
 - energetic basic determination
 - financing plan
 - assignment of actors
 - construction mass distribution
 - construction system and design
 - spacious and energetic flexibility
 - daylight concept
 - thermal quality
 - renewable energy
 - storage devices for relieving the network load
 - economic efficiency
 - regulation concept
 - heat output / cold output
 - detail models for the implementation of nZEB and PEB
 - quality control
 - achievement of energy and economic targets
 - documentation
 - user behaviour
 - monitoring

Correlation Matrix

- **Bilateral Correlation** (25%)
- **Partial Correlation** (25%)
- **No Correlation** (0%)

Own illustration based on PLENAR
Methodology

• Correlations
 identify correlations
 who is responsible

• Optimization methods
 to optimize the whole planning process

• Supporting processes
Optimization methods

Two basic types:
- Radical methods
- Successive methods

Three strategies:
- Process reengineering (Business Process Reengineering)
- Process optimisation (Total Quality Management, Lean Management)
- Continuous improvement process (Kaizen, Six Sigma)
Supporting processes

• Artificial intelligence

• Integral planning

• Building Information Modeling
Results

Main results:
- Interaction of all stakeholders and actions
- Temporal reorganization of actions
- Locate sources of error

Effects after optimization:
- Time efficient
- Cost reduction
Conclusion

• The new process has to be tested

• It will be a long time process to replace common methods
Renewable Heating and Cooling in Integrated Urban and Industrial Energy Systems

#ISEC2020 - a Forum for Research, Business and Energy Policy

Topics and Call for Papers: January 2020

14th - 16th October 2020
Congress Graz, Austria
Thank you for your Attention