

Sustainable Built Environment Conference, 12. September 2019, TU-Graz

Mobile Tiny Homes – Sustainable & Affordable?

Herbert C. Leindecker

FH OÖ Studiengänge • Hagenberg • Linz • Steyr • Wels

University of Applied Sciences Upper Austria

Campus Wels: "Eco-Energy Engineering" (since 2002) > 2019 "Applied Energy Engineering"

Unique combination of electrical engineering, mechanical engineering, civil engineering, building technologies and renewable energy systems

Content

- 1. Development of a building technology concept in modular design (master thesis Lukas Krainz)
- 2. Energy self-sufficient cabin (interdisciplinary project)
- 3. Practical example (economic efficiency & environmental sustainability

Genböck / Leindecker

Examples for tiny houses:

Wohnwagon

Microloft

Flexbox

holzheim...

1. Modular Design: Development Building of a Technology Concept (Lukas Krainz)

- Description of the current building technology concept
- Development of an innovative building technology concept with focus on heating system and air ventilation
- Photovoltaic simulation
- klimaaktiv building declaration

Source: Lukas Krainz, Master Thesis 2018

1. Modular Design: Mobility of buildings

- Example from Master Thesis: Level 4 Special Transport → Three escort vehicles including three road supervisory authorities are required!
- Balancing act between industrial prefabrication and transportability
- Infrastructure sets the dimension (roads, bridges, underpasses,...)
- In Austria, the transport is regulated in the so called "Special Transport Order" (SOTRA).

1. Modular Design: Special Transport Levels

	Level 1	Level 2	Level 3	Level 4
Width	3,01 – 3,20m	3,21 – 4,50m	4,51 – 5,00m	from 5,01
Height	-	from 4,31m	-	-
Length	22,01 – 25,00m	25,01 – 40,00m	from 40,01m	-
Weight	individual (depending on weight, axle load and requirements			from 140,01t
	of the expert opinion of the road administration)			
Legal	self-	1 Vehicle incl. 1	2 Vehicles incl. 2	min. 3 Vehicles
Requirements	accompaniment	sworn road	sworn road	incl. min. 3
		supervisory	supervisory	sworn road
		authority	authorities	supervisory
				authorities

Source: SOTRA

1. Modular Design: Infrared Heating System

Source: Lukas Krainz, Master Thesis 2018

SBE 2019, TU-Graz, Herbert C. Leindecker

Ground Floor, only one level

1. Modular Design: Infrared Heating System

Advantages & Disadvantages

- Low investment & maintenance costs
- Quick heating times & greater flexibility
- High radiation content / low convection content

B

- High-quality form of energy for heating
- Additional system for hot water generation is needed
- High electricity price \rightarrow high operating costs
- Only for nearly-zero energy buildings (HWB \leq 10 kWh/m²a)

1. Modular Design: Infrared Heating System

Conclusion An infrared heating system can only be operated economically if:

	Passivhaus ¹	'haus ⁱ Niedrigstenergiehaus ⁱ N en		Niedrig- energiehaus	Altbau < 20 Jahre	ltbau Altbau 0 Jahre > 20 Jahre r saniert un- oder teilsaniert	Warmwasseraufbereitung empfohlen mit		mov nov
				oder	oder saniert		ermie	pumpe bination tovoltaik	Nutzung Sonnenstr rid readv)
Haupt-Heizsysteme für Raumwärme und Warmwasser	$\frac{HWB_{SK}^{2}: \text{HeizWärmeBedarf am Standov}}{\leq 10 \text{ (A++)}} \leq 15 \text{ (A+)} \leq 25 \text{ (A)}$		$ \leq 50 (B) \leq 100 (C) > 100 (D)$		Solartho	Wärme in Kom mit Pho	Flexible Wind-/s (Smart G		
Passivhaussystem Komfortlüftung mit Luftheizung		Alleini	ge Luftheizung	unter Komfortbed	lingungen nicht i	nöglich	+	11	
Kombigerät Komfortlüftung mit Nieder- temperatur-Wasser-Wärmeverteilung bis 35° C					Leistung des Heizsystems nicht ausreichend		÷	++	÷ŧ
Erdreich-Wärmepumpe ³ mit Nieder- temperatur-Wasser-Wärmeverteilung bis 35° C							+	++	++
Grundwasser-Wärmepumpe ³ mit Nieder- temperatur-Wasser-Wärmeverteilung bis 35° C							+	++	++
Außenluft-Wärmepumpe mit Nieder- temperatur-Wasser-Wärmeverteilung bis 35° C							+	++	++
Pellets-Zentralheizung mit Pufferspeicher							++	++	
Stückholzvergaser-Zentralheizung mit Pufferspeicher							++	+	
Nahwärme/Fernwärme auf Biomassebasis							+	++	
Kaminofen (Stückholz/Pellets) oder Kachel- ofen-Ganzhausheizung mit Pufferspeicher					Leistung des nicht au	Heizsystems sreichend	++	+	
Kaminofen- oder Kachelofen-Ganzhaushei- zung ohne wassergeführtem Wärmeabgabesystem					Leistung des nicht au	Heizsystems sreichend	+	++	
Elektro-Direktheizung (z. B. Infrarotheizung) mit Solaranlage							++	++	

 Very good thermal building envelope conditions → HWB ≤ 10 kWh/m²a

- Ecological electricity contract and

 Electricity is generated by photovoltaic (including storage system) <u>and</u>

- High efficient infrared heating panels

Die Kombination mit einer Komfortläftungsamlage und mit Sonnenenergie (für die Warmwasserbereitung, Heizungsanterstützung oder Stromerzeugung) wird bei einem klimaaktiv Heizsystem immer empfohlen. Die individuelle Technologie-Entscheidung (Solarthermie oder Photovoltaik) muss im Eiszelfall geprüft werden!

Empfehlungen: (Kriterien sind CO2, Investitionskosten, Heizkomfort):

📕 sehr empfehlenswert 📕 empfehlenswert 📒 weniger empfehlenswert 📕 nicht empfehlenswert 🗌 technisch nicht sinnvoll

the state where the state we wanted the state where the state we wanted as the state wante	
am. Exerginana vero, Sente 2. Tabello "Warma- und Emergializade (* ande passive Rahdung im Sommer moglain.	

Source: www.klimaaktiv.at

1. Modular Design: Air Ventilation System

Operating Principle

Source:blumartin, Lukas Krainz, Master Thesis 2018

SBE 2019, TU-Graz, Herbert C. Leindecker

1. Modular Design: klimaaktiv-Building Declaration

Source: Lukas Krainz, Master Thesis 2018

klima**aktiv**

2. Energy self-sufficient cabin (Students project)

Goals of the Interdisciplinary Project:

- Theoretical elaboration on the topic of module construction and mobility
- Presentation of a concept draft with CAD plans
- Substitution of expensive and ecologically questionable building parts
- Optimization of the energy concept
- Efficiency calculations and comparison with other building concepts
- 3D-Visualization with VR glasses for virtual tour
- Construction of the cabin in cooperation with regional companies

Source: Leindecker et al., Interdisciplinary Project, Upper Austria University of Applied Sciences 2017

SBE 2019, TU-Graz, Herbert C. Leindecker

2. Energy self-sufficient cabin: Modular Design

2. Energy self-sufficient cabin: Wall

Wall Construction

No.
1
2
3
4
5
6
7
8

No.	Component	d [cm]	λ [W/mK]
1	Natural Wood Board	1,90	0,120
2	Installation Gap (with Insulation)	2,70	0,045
3	Vapor Barrier	0,10	0,230
4	Battens (20%), Insulation (80%)	22,00	0,045
5	DHF-Wood Fiber Board	1,50	0,100
6	Ventilation Battening	3,00	-
7	Counter Battening	2,70	-
8	Lintel Shuttering	2,40	-

U-Value = 0,21 W/m²K

Source: Leindecker et al., Interdisciplinary Project, Upper Austria University of Applied Sciences 2017

SBE 2019, TU-Graz, Herbert C. Leindecker

2. Energy self-sufficient cabin: Foundations

Screw-Foundations

Source: www.neuco.eu

- ✓ No time-consuming and cost-intensive excavation work
- ✓ Residue-free removal \rightarrow preservation of the value of the building ground
- ✓ No destruction of soil ecology

SBE 2019, TU-Graz, Herbert C. Leindecker

2. Energy self-sufficient cabin (sample wall)

Power Supply: Two building integrated 50W Single Room Ventilation Unit (with heat mono-crystalline PV modules (serial, 24 V DC); recovery): has the task to efficiently exchanging 4 gel batteries monitored by a charge controller the used, low-oxygen and humid warm room air (capacity 34 Ah); inverter from 24V DC to 230V with the fresh outside air at a power consumption AC. of 4-34 W. Compared to manual ventilation, 80 to 90 % of the heat is recovered. Heat supply: Infrared heating panel under Bio-Cardboard Honeycomb Insulation: Passively Vinyl floor; power supply self-sufficient via own uses solar radiation for heat generation (winter); photovoltaic system; pleasant room climate; prevents overheating (summer); in the best case supply voltage 24 V; ideal for small temporary negative dynamic U-value and an average Uheated buildings value of 0 W/m²K is possible. Wall Construction Source: Leindecker et al., Interdisciplinary Project, Upper Austria University of Applied Sciences 2017

SBE 2019, TU-Graz, Herbert C. Leindecker

Energy self-sufficient cabin: Costs

Costs for a cabin with 100m² (example)

Costs (ready for expansion) = $1.400 \notin m^2$

(incl. doors, windows, façade and roof exterior finished; interior ready for expansion)

Costs (turnkey) = 2.160 €/m²

(incl. doors, windows, parquet flooring, facade, roof, electrical installation, sanitary installation and all walls painted white)

Source: Leindecker et al., Interdisciplinary Project, Upper Austria University of Applied Sciences 2017

SBE 2019, TU-Graz, Herbert C. Leindecker

3. Practical Example

microHome (Genböck Haus); microloft

3. Practical Example

microHome (Genböck Haus) 2 moduls

microHOME (Leindecker, "extended version"), 5 moduls

Source: www.genboeck.at

Folie 19

OBERÖSTERREICH

3. Practical Example: Assembling the Moduls

microHome (Leindecker)

OBERÖSTERRE

3. Practical Example: First Floor finished

3. Practical Example: cost-effectiveness

3. Practical Example: Indoor Air Quality in Summer

3. Practical Example: Ventilation System

microHome (Leindecker)

Decentralized Ventilation System with heat recovery and cooling option

Source: privat

3. Practical Example: Photovoltaic facility

microHome (Leindecker)

PV Overview

Source: privat

_ 0 ?pvSystemId=2decaa79-5de 🔎 - 🔒 🖒 Dr. Leindecker Herbert Claus × https://www.colanweb.com/Pu **市** ★ 🛱 👕 Webmail - Liwest 🔐 Fahrplanauskunft OBB - Startseite 🔶 Wels Strom ecarsharing 🧧 Google 📴 LEO Deutsch-Englisches ... 🧃 FH OÖ Webmail 🎒 FH OOE Campus Wels We... 🚡 🔹 🔝 👻 🛲 🔹 Seite 🔹 Sicherheit 👻 Extras 🕶 🚱 n 🖬 🖪 · ERTRAG AKTUELLE LEISTUNG ENERGIEBILANZ HEUTE September 2019 13,48 EUR 1.962 km DR. LEINDECKER HERBERT CLAUS ➡ 17°C A Nach obe SOZIALE MEDIEN ONTAKT Facebook • 75% • 3 6 0 0 😫 🧮 - 🔐 🐗 🍓 12:05

Folie 25

Practical Example: Photovoltaic Monitoring

microHome (Genböck Haus, Leindecker)

SBE 2019, TU-Graz, Herbert C. Leindecker

Conculsions

- Mobility of houses is a most interesting topic
- Mobile homes offer the possibility of renting land for a temporary period of time
- Prefabrication, flexibility, sustainability and sufficiency are becoming increasingly important, facing a steady rise in real estate and building prices
- The flexible use of small residential modules offers new possibilities for structural redensification in urban areas and use of vacancy (inner courtyards, rooftops...)
- These projects show that modular based building concepts can be produced and operated in a sustainable, economical and "affordable" way

Removable PopUp dorms Seestadt Aspern

Sigurd Larsen: modular houses on the rooftop of concrete blocks in Berlin

Contact Information

FH OÖ Studienbetriebs GmbH

Mail: herbert.leindecker@fh-wels.at

Stelzhamerstraße 23

Tel.: 050804 - 44220

4600 Wels

www.fh-ooe.at

FH-Prof. Arch. DI Dr. Herbert C. Leindecker

Event Information

Datum: Dienstag, 26. November 2019
Dauer: 09:00 bis 13:00 Uhr
Veranstaltungsort: FH OÖ Campus Wels, Fakultät für Technik und Angewandte Naturwissenschaften

Thank you very much for your attention!

SBE 2019, TU-Graz, Herbert C. Leindecker