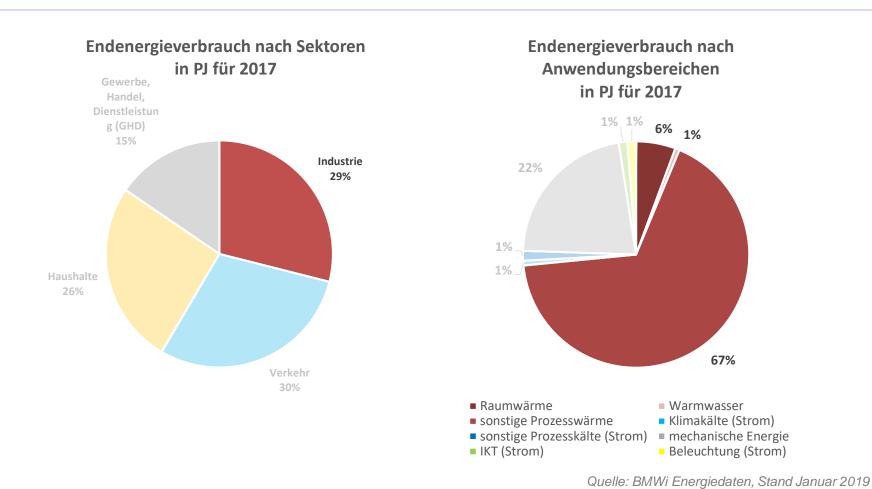
16. Symposium Energieinnovation – TU Graz Wege zur klimaneutralen und kosteneffizienten Wärme- und Kälteversorgung von Industriestandorten

Graz, 13. Februar 2020

Simon Möhren, SWK E² Hochschule Niederrhein

Inhalt

- 1. Einleitung
- 2. Methode
 - 2.1 Mehrperiodische Wärmeintegration
 - 2.2 Gewichtungsfaktoren
- 3. Fallbeispiel
- 4. Zusammenfassung und Ausblick



Inhalt

- 1. Einleitung
- 2. Methode
 - 2.1 Mehrperiodische Wärmeintegration
 - 2.2 Gewichtungsfaktoren
- 3. Fallbeispiel
- 4. Zusammenfassung und Ausblick

Endenergieverbrauch der deutschen Industrie in PJ

Theoretisches Abwärmepotential für Deutschland (Bottom-up)

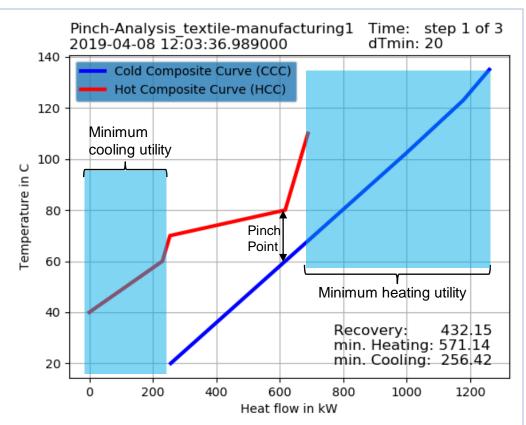
Grafik Brueckner et al. (2017)

Theoretisches Potential: 61,9 TWh/a

Theoretisches Potential Technisch nutzbares Potential Wirtschaftlich nutzbares Potential

- Das theoretische Potential zur Abwärmenutzung in Deutschland beträgt 61,9 TWh pro Jahr [1]
- Dies entspricht knapp 12 % des Prozesswärmebedarfs der deutschen Industrie [2]
- Ein Großteil des Potentials ist bislang ungenutzt [3]

[1] Brueckner et al. (2017) [2] BMWI Energiedaten, (2019) [3] Dütschke et al. (2018)



Pinch-Analyse als graphisches Verfahren

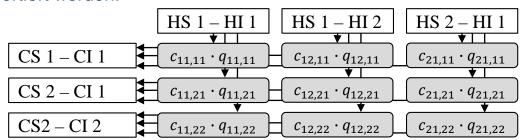
Zusammenfassen der kalten (CS) und heißen Ströme (HS) durch intervallweise Addition der Wärmeströme \dot{Q}

$$\dot{Q}_{j,i} = \sum_{j=1}^{H} \sum_{l=1}^{L} \dot{m}_j \cdot c_{p_j} \cdot (T_{in_l} - T_{out_l})$$

Ziel: Errechnen der maximal möglichen Abwärmenutzung für ΔT_{min}

- Wie sieht das optimale Wärmeübertrager Netzwerk (HEN) aus?
- Wo sind andere Technologien zur Abwärmenutzung sinnvoll?

Quelle: Linnhoff & Flower (1978) Klemes et al. (2011) Klemes et al. (2018)


Mathematische Optimierung Beispiel: Lineares Wärmetransportproblem (LP)

Problem:

- Wärme soll mit möglichst geringen Kosten von der Wärmequelle j in den Temperaturintervallen I zu Wärmesenken i in den Temperaturintervallen k transportiert werden.
- a_{ik} ist der Wärmebedarf von Strom i im Intervall k und b_{jl} die verfügbare Wärme von Strom j im Intervall l.
- Jeder mögliche Transportweg bildet einen Knoten. Über ihn kann die Wärme $q_{ik,jl}$ mit den spezifischen Kosten $c_{ik,il}$ transportiert werden.

Zielfunktion:

$$\min_{\mathbf{q}_{\mathrm{ik,jl}}} \sum_{i=1}^{\mathrm{CS}} \sum_{k=1}^{\mathrm{CI}} \sum_{i=1}^{\mathrm{HS}} \sum_{l=1}^{\mathrm{HI}} c_{\mathrm{ik,j}l} \cdot q_{\mathrm{ik,j}l}$$

Randbedingungen:

- Nichtnegativitätsbedingung: $q_{ij} \ge 0$ für alle i, j, k, l
- Wärme der Quellen: $\sum_{i=1}^{n} q_{ij} \le a_i \ (i=1,...,m)$
- Wärme der Senken: $\sum_{i=1}^{m} q_{ij} \leq b_i \ (j = 1, ..., n)$

Ausgeschrieben:

$$c_{11,11} \cdot q_{11,11} + c_{12,11} \cdot q_{12,11} + c_{21,11} \cdot q_{21,11} + c_{11,21} \cdot q_{11,21} + c_{12,21} \cdot q_{12,21} + c_{21,21} \cdot q_{21,21} + c_{11,22} \cdot q_{11,22} + c_{12,22} \cdot q_{12,22} + c_{21,22} \cdot q_{21,22}$$

Quelle: Cerda et al. (1983)

Inhalt

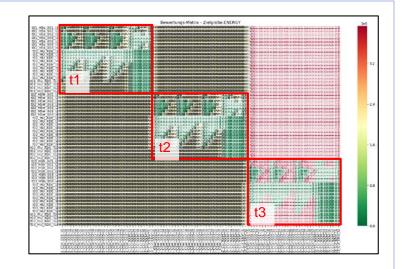
- 1. Einleitung
- 2. Methode
 - 2.1 Mehrperiodische Wärmeintegration
 - 2.2 Gewichtungsfaktoren
- 3. Fallbeispiel
- 4. Zusammenfassung und Ausblick

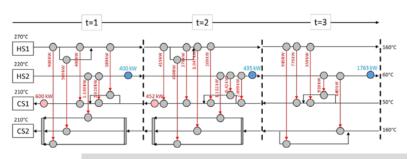
2.1 Mehrperiodische Wärmeintegration Zielfunktion und Nebenbedingungen

Zielfunktion:

$$\min_{\dot{Q}_{tik,tjl}} \sum_{t=1}^{T} \sum_{i=1}^{C} \sum_{k=1}^{L} \sum_{j=1}^{H} \sum_{l=1}^{L} C_{tik,tjl} \cdot \dot{Q}_{tik,tjl} \cdot \tau_{t}$$

Nebenbedingungen:


Nichtnegativitätsbedingung: $q_{ij} \ge 0$ für alle i, j, k, l


Wärme der Quellen: $\sum_{j=1}^{n} q_{ij} \le a_i \ (i = 1, ..., m)$

Wärme der Senken: $\sum_{i=1}^{m} q_{ij} \leq b_i$ (j = 1, ..., n)

Kein Wärmetransport zwischen Zeitschritten:

 $\dot{Q}_{tik,til} = 0$ wenn t nicht identisch in a_{tik} und b_{til}

Abweichendes HEN für jeden Zeitschritt t

Quelle: Cerda et al. (1983), Aydemir et al. (2016)

2.1 Mehrperiodische Wärmeintegration Einheitliches Wärmeübertrager-Netzwerk (HEN)

Zielfunktion:

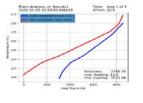
$$\min_{\dot{Q}_{tik,tjl}} \sum_{t=1}^{T} \sum_{i=1}^{C} \sum_{k=1}^{L} \sum_{j=1}^{H} \sum_{l=1}^{L} C_{tik,tjl} \cdot \dot{Q}_{tik,tjl} \cdot \tau_{t}$$

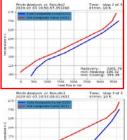
Nebenbedingungen:

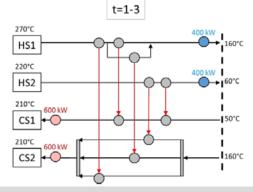
Nichtnegativitätsbedingung: $q_{ij} \ge 0$ für alle i, j, k, l

Wärme der Quellen: $\sum_{j=1}^{n} q_{ij} \le a_i \ (i = 1, ..., m)$

Wärme der Senken: $\sum_{i=1}^{m} q_{ij} \leq b_i$ (j = 1, ..., n)


Kein Wärmetransport zwischen Zeitschritten:

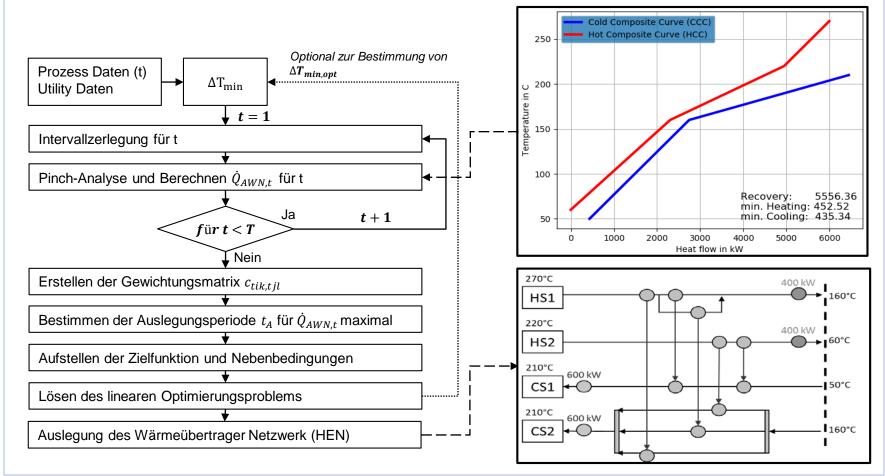

 $\dot{Q}_{tik,tjl} = 0$ wenn t nicht identisch in a_{tik} und b_{tjl}


Übertragen des HEN von einem Auslegungszeitpunkt t_A :

 $\dot{Q}_{tik,tjl} \leq \dot{Q}_{t_Aik,t_Ajl} \cdot f_{Teillast}$ mit z. B. $f_{Teillast} = 1$

Bestimmen von t_A mit der Pinch-Analyse

Einheitliches HEN für jeden Zeitschritt t


Quelle: Cerda et al. (1983), Aydemir et al. (2016)

2.1 Mehrperiodische Wärmeintegration - Kombination aus linearer Optimierung und Pinch Analyse

2.2 Gewichtungsfaktoren Energetische und Ökologische Optimierung

Energetische Optimierung:

$$c_{Energie,tik,tjl} \begin{cases} 0 & i \ und \ j \ sind \ Prozessstr\"{o}me, W\"{a}rmetransport \ zul\"{a}ssig \\ i \ und \ j \ sind \ Utilities \\ i \ oder \ j \ ist \ eine \ Utility \\ M & t \ von \ HS \ \neq t \ von \ CS \ (M \ ist \ eine \ große \ Zahl) \\ M & in \ allen \ anderen \ F\"{a}llen \ (M \ ist \ eine \ große \ Zahl) \end{cases}$$

Ökologische Optimierung:

$$c_{CO2,tik,tjl} \begin{cases} 0 & i \ und \ j \ sind \ Prozessstr\"{o}me, W\"{a}rmetransport \ zul\"{a}ssig \\ i \ und \ j \ sind \ Utilities \\ c_{CO_2,UT,tik,tjl} & i \ oder \ j \ ist \ eine \ Utility \\ M & t \ von \ HS \ \neq t \ von \ CS \ (M \ ist \ eine \ große \ Zahl) \\ M & in \ allen \ anderen \ F\"{a}llen \ (M \ ist \ eine \ große \ Zahl) \end{cases}$$

mit

Quelle: Cerda et al. (1983)

2.2 Gewichtungsfaktoren Ökonomische Optimierung

Ökonomische Optimierung:

$$c_{Kosten,tik,tjl} \begin{cases} c_{W\ddot{\text{U}},tik,tjl} & i \ und \ j \ sind \ Prozessstr\"{\text{o}}me, \ W\"{\text{a}}rmetransport \ zul\"{\text{a}}ssig \\ i \ und \ j \ sind \ Utilities \\ c_{UT,tik,tjl} & i \ oder \ j \ ist \ eine \ Utility \\ M & t \ von \ HS \ \neq t \ von \ CS \ (M \ ist \ eine \ große \ Zahl) \\ M & in \ allen \ anderen \ F\"{\text{a}}llen \ (M \ ist \ eine \ große \ Zahl) \end{cases}$$

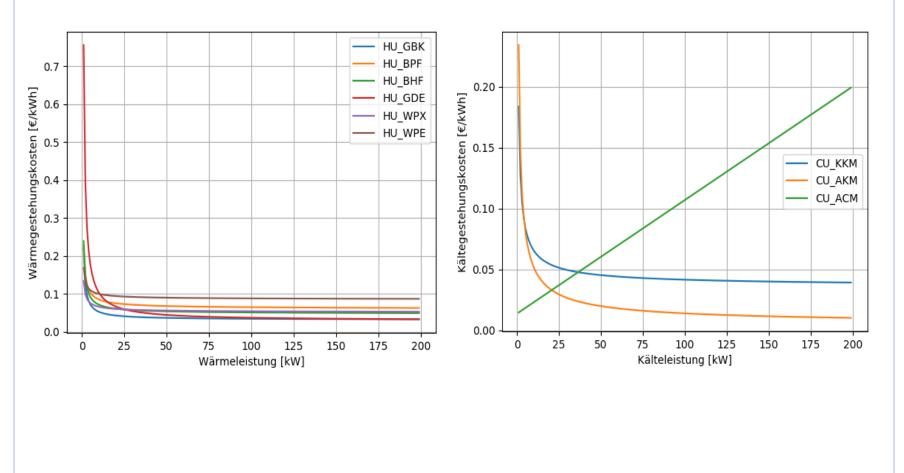
mit Wärme- bzw. Kältegestehungskosten nach VDI 6025

$$c_{UT,tik,tjl} = \frac{\left(A_{0,t} \cdot (1 - f_{F\ddot{o}rder}) + \sum_{n=1}^{T_{Nutz}} \frac{A_{n,t}}{q^n}\right)}{Q_t} \cdot a_{T_{Nutz}}$$

$$A_{0,t} = a_0 \cdot \dot{Q}_t \cdot f_{Instal}$$

$$A_{n,t} = \begin{bmatrix} k_{Personal} \cdot \tau_{Bedienung} + A_{0,t} \cdot (f_{Inst} + f_{W+Insp}) \end{bmatrix} \cdot a_n \cdot b_{Betrieb,n} + \underbrace{\frac{\dot{Q}_t \cdot \tau_t}{\eta_{th}} \cdot k_{Preis} \cdot a_n \cdot b_{Bedarf,n}}_{Bedarfsgebundene Zahlungen}$$

$$Betriebsgebundene Zahlungen$$


$$Bedarfsgebundene Zahlungen$$

mit spezifischen Kosten der Wärmeübertrager

$$c_{\text{WÜ,tik},tjl} = \frac{A_{0,t} + \sum_{\text{n=1}}^{T_{Nutz}} \left(\frac{A_{0,t} \cdot \left(f_{Inst} + f_{\text{w}+Insp} \right) \cdot a_n \cdot b_{\text{Betrieb},n}}{q^n} \right)}{\dot{Q}_t} \cdot a_{T_{Nutz}}$$

2.2 Gewichtungsfaktoren Wärme- und Kältegestehungskosten in €kWh

Inhalt

- 1. Einleitung
- 2. Methode
 - 2.1 Mehrperiodische Wärmeintegration
 - 2.2 Gewichtungsfaktoren
- 3. Fallbeispiel
- 4. Zusammenfassung und Ausblick

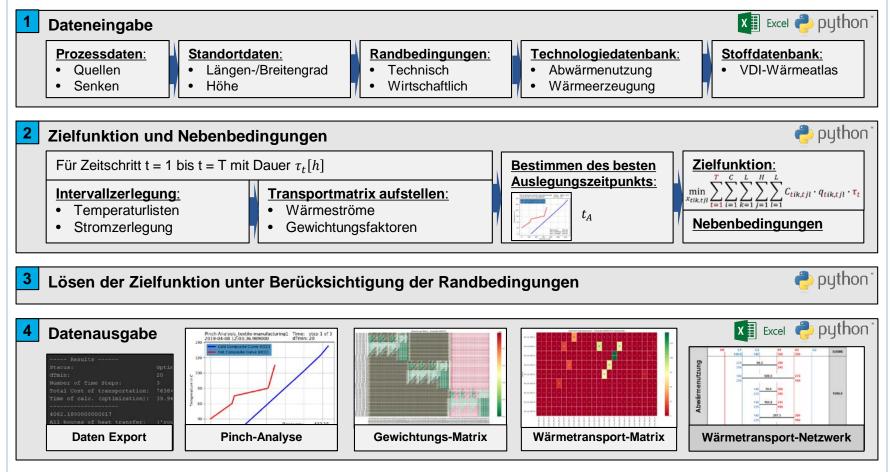
3. Fallbeispiel Problemschreibung

Problembeschreibung:

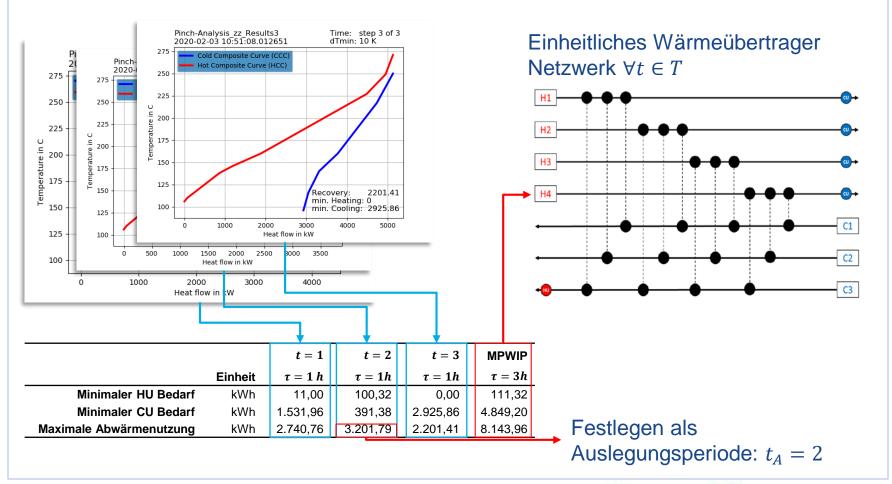
- 4 Wärmequellen (HS)
- 3 Wärmesenken (CS)
- 3 Perioden
- Alle verfügbaren Anlagen zur Energiebereitstellung

	Tein	Taus	$\dot{m}_1c_{\mathfrak{p},1}$	$\dot{m}_2 c_{p,2}$	$\dot{m}_3 c_{p,3}$
Ströme	[° <i>C</i>]	[° <i>C</i>]	[kW/K]	[kW/K]	[kW/K]
HS1	160	110	8,790	7,032	10,548
HS2	249	138	10,550	8,440	12,660
HS3	227	106	14,770	11,816	17,724
HS4	271	146	7,000	7,000	8,400
CS1	96	160	7,620	9,144	6,096
CS2	116	217	6,080	7,296	4,864
CS3	140	250	15,000	18,000	12,000

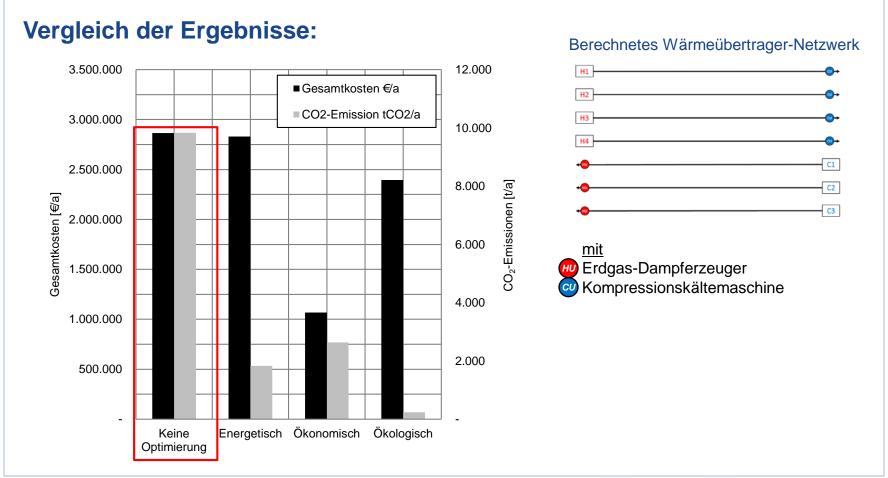
Periode 1

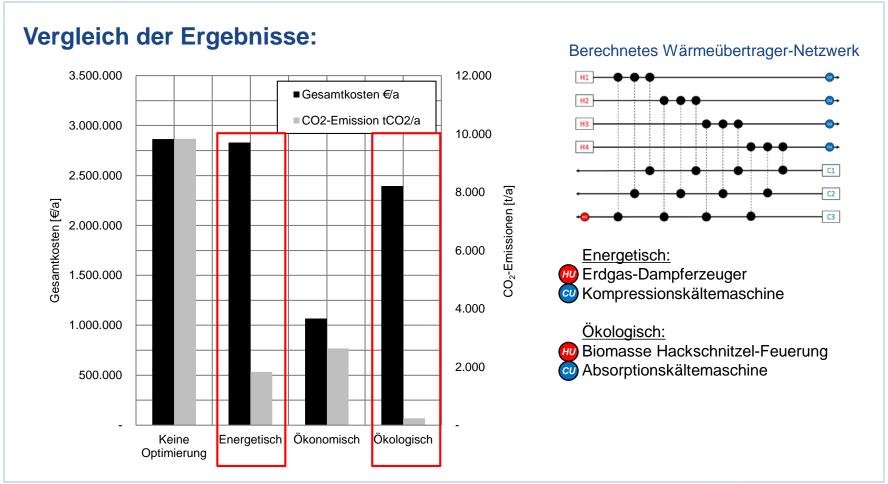

Fragestellung:

- Wie müssen die Wärmequellen (HS) und Wärmesenken (CS) für alle drei Perioden verknüpft werden, damit:
 - → Der externe Energiebedarf möglichst gering ist?
 - → Die Gesamtkosten des Systems minimal sind?
 - → Die CO₂-Emissionen des Systems minimal sind?
- Welche Anlagen zur Energiebereitstellung sollten genutzt werden?

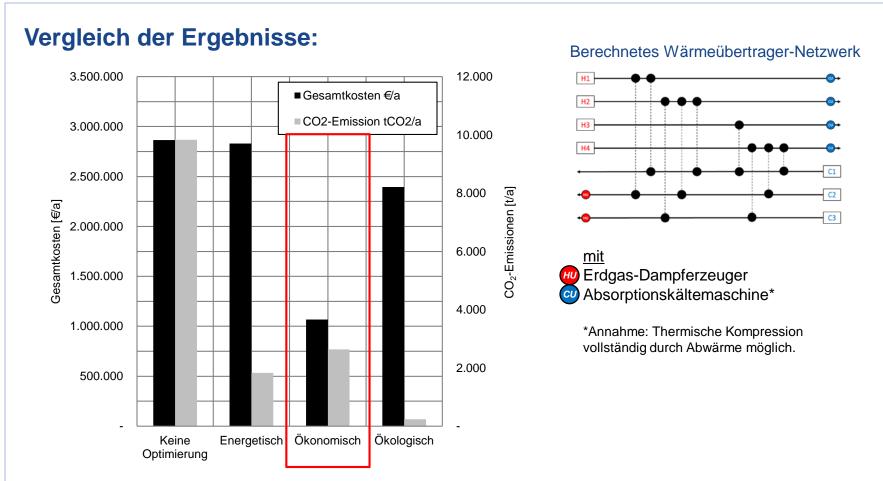


Periode 2 Periode 3


Implementierung in Python


Minimierung des externen Energiebedarfs

Minimierung der Kosten und CO₂-Emissionen



Minimierung der Kosten und CO₂-Emissionen

Minimierung der Kosten und CO₂-Emissionen

Inhalt

- 1. Einleitung
- 2. Methode
 - 2.1 Mehrperiodische Wärmeintegration
 - 2.2 Gewichtungsfaktoren
- 3. Fallbeispiel
- 4. Zusammenfassung und Ausblick

4. Zusammenfassung und Ausblick

- Durch die systematische Nutzung industrieller Abwärme kann der Endenergiebedarf, die Kosten und CO₂-Emissionen der Industrie signifikant reduziert werden.
- Bei kostenoptimaler Auslegung des mehrperiodischen Fallbeispiels nach Floudas & Grossmann, (1986) ist eine Reduzierung der Kosten um 62 % und der CO₂-Emissionen um 73 % möglich.
- Bei CO2-optimaler Auslegung kann eine Reduzierung der Emissionen um 97,6 % erzielt werden. Eine vollständige CO₂-Neutralität ist auf Basis der verwendeten Technologien und Annahmen nicht möglich.*

Weitere Betrachtungsfelder:

- Einbindung von thermischen Energiespeichern und Wärmepumpen
- Berücksichtigung von Rohrleitungskosten und Wärmeverlusten
- Auswirkungen einer CO₂-Bepreisung auf die Kosten

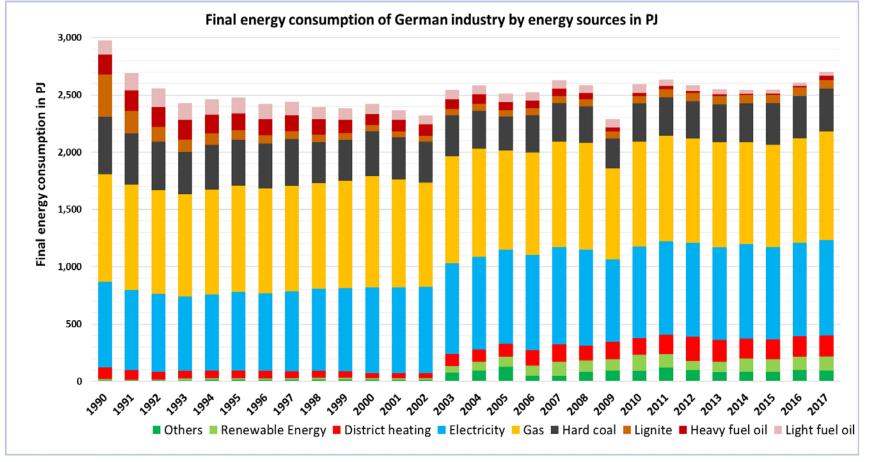
*Berechnung mit spezifischen CO₂-Faktoren nach BAFA - Merkblatt zu den CO₂-Faktoren 2019; Mögliche Vorketten-Emissionen bleiben unberücksichtigt; Wärmepumpe mit regenerativem Strom aufgrund der erforderlichen Temperaturen der CS nicht einsetzbar.

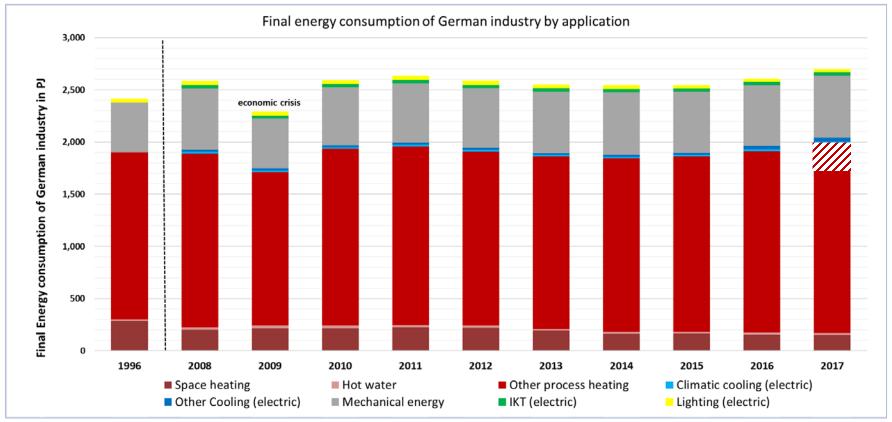
Vielen Dank für Ihre Aufmerksamkeit!

Hochschule Niederrhein SWK E²

Obergath 79 (Gebäude J) 47805 Krefeld

Simon Möhren, M.Sc.

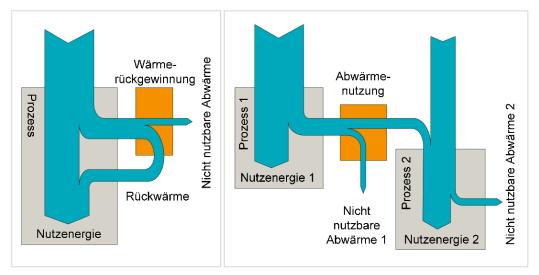

Simon.moehren@hs-niederrhein.de Tel: +49 (0)2151 822-6698


Endenergieverbrauch nach Energieträgern in der Deutschen Industrie in PJ

Quelle: BMWi Energiedaten, Stand Jan 2019

Endenergieverbrauch nach Anwendungsbereichen in der Deutschen Industrie in PJ

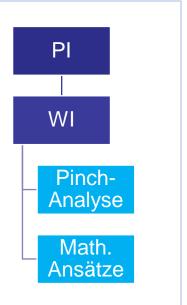
Quelle: BMWi Energiedaten, Stand Jan 2019


Theoretisches Einsparpotential durch Abwärmenutzung 61,9 TWh/a

Begriffsdefinition Abwärme

Definition Abwärme: Abwärme ist die an die Umgebung abgeführte Wärme (Stephan et al.,2007).

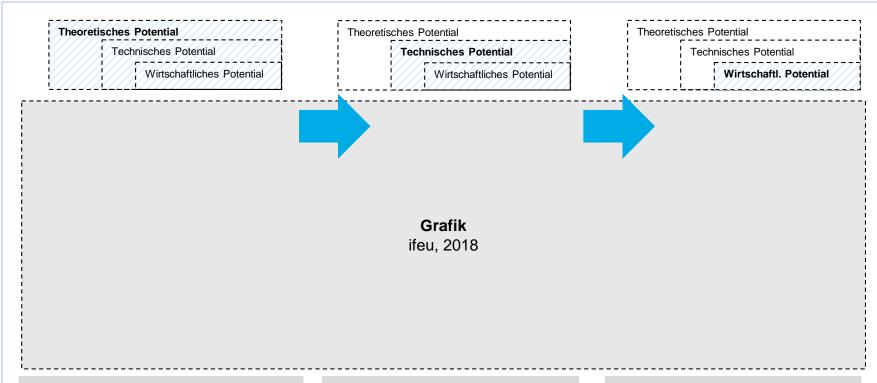
Abgrenzung Wärmerückgewinnung / Abwärmenutzung:


Quelle: Hirzel et al. 2013

Nutzung von Abwärme

Backup Begriffsdefinitionen

- Prozessintegration (PI): Methoden der ganzheitlichen Prozessoptimierung. PI ist der Oberbegriff für systemorientierte, ganzheitliche Ansätze industrielle Prozesse und Anlagen in Bezug auf Kosten, Energieverbrauch oder Emissionen zu Optimieren.
- Wärmeintegration (HI): Eine Technik der PI, Entwickelt von Linnhoff und Flower 1978 mit dem Ziel die einem Prozess zugeführte Wärme und Kühlung zu reduzieren.
- Pinch-Analyse: Das am weitesten verbreitete graphische Verfahren der Pl.
- Mathematische Ansätze: Seit 1980 wurden diverse Ansätze zur math. Optimierung von Wärmeübertrager Netzwerken (HEN) entwickelt (LP, NLP, MILP, MINLP)


Quelle: Klemes et al. 2011; Klemes et al. 2018

Theoretisches, technisches und wirtschaftliches Potential

Theoretisches Potential:

62,6 TWh/a

8,3 % des Endenergieverbrauchs der Industrie (2017)

Technisches Potential:

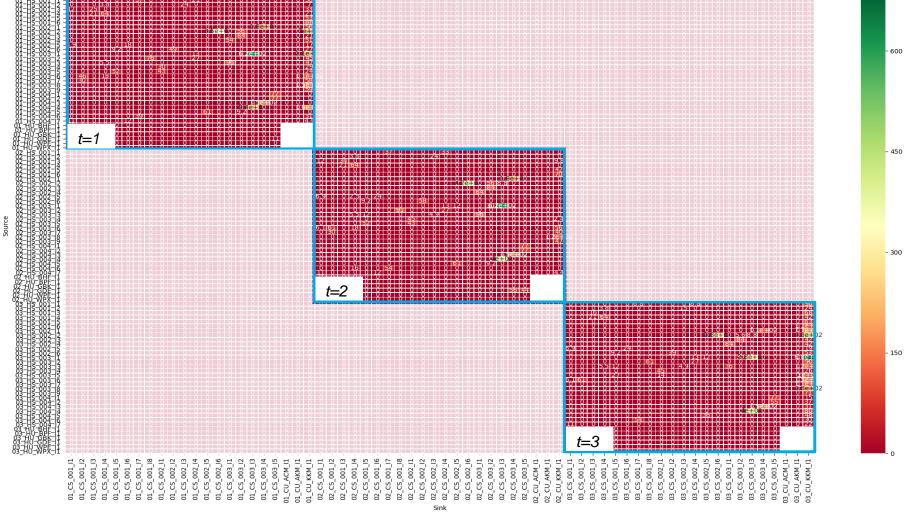
28,9 TWh/a

3,9 % des Endenergieverbrauchs der Industrie (2017)

Wirtschaftliches Potential:

19,2 TWh/a

2,6 % des Endenergieverbrauchs der Industrie (2017) Quelle: ifeu, 2018



Wärmetransportmatrix (Energetische Optimierung)

Optimaler Wärmetransport - MIN: ENERGY, Timesteps: all

Backup Vergleich der Ergebnisse

		u,	Wahl der Gewichtungsfaktoren				
	Einheit	Ohne Nutzung von Abwärme	Energetisch ¹	Ökonomisch	Ökologisch		
Externer Energiebedarf	MWh/a	62.045,4	14.484,7	34.909,0	14.484,7		
Min. HU Wärmeleistung	kW	2.751,76	37,11	1.202,88	37,11		
Min. CU Kälteleistung	kW	4.331,05	1.616,40	2.782,17	1.616,40		
Max. Abwärmeleistung	kW	-	2.714,65	1548,88	2.714,65		
Gesamtkosten	T€/a	2.864,6	2.830,1	1.068,9	2.395,0		
CO ₂ -Emission	t _{CO2} /a	9.829,38	1.824,90	2.632,60	237,03		
Kosteneinsparung	%	-	1,21	62,68	16,39		
CO ₂ -Einsparung	%	-	81,43	73,22	97,59		

¹HU: Erdgas-Dampfkessen; CU: Kompressionskältemaschine

Berechnung der Gewichtungsfaktoren

	Rechnerische Nutzungsdauer¹	Aufwand für Instandsetzung¹	Aufwand für Wartung & Inspektion¹	Aufwand für Bedienen¹	Spezifischer Investitionsbetrag	Nutzungsgrad / Gütegrad/ Leistungszahl ⁷	Förderfaktor ²	Vorlauftemperatur
	Т	\mathbf{f}_{Inst}	f _{w+lnsp}	t _{Aufwand}	$a_0(\dot{Q})$	η_{th} / G_{WP} /EER	$f_{F\"{o}rderung}$	T_{max}
	[a]	[%]	[%]	[h/a]	[€/kW]	[%]	[-]	[°C]
Anlagen zur Wärmeerzeugung								
Gas-Brennwertkessel	20	1	2	20	$374,09 \cdot \dot{Q}^{-0,307}$	0,87	0,00	110
Holzpellet-Festbettfeuerung	15	3	3	15	1513,7 $\cdot \dot{Q}^{-0,430}$	0,86	0,45 / 0,55	500
Hackschnitzel-Festbettfeuerung	15	3	3	20	777,03 · $\dot{Q}^{-0,295}$	0,76	0,45 / 0,55	500
Gas-Flammrohr-Dampfkessel 10 bar	25	2	1,5	80	$203,46 \cdot Q^{-0,248}$	0,95	0,00	250 ⁴
Wärmepumpe Wasser/Wasser	20	1	1,5	5	$2610,2 \cdot \dot{Q}^{-0,558}$	$0,45^{3}$	0,45 / 0,55	120
Solarthermie Flachkollektor	20	0,5	1	5	$2450,4 \cdot \dot{Q}^{-0,134}$	-	0,45 / 0,55	80
Solarthermie Vakuum-Röhrenkollektor	18	0,5	1	5	$3097,3 \cdot \dot{Q}^{-0,121}$	-	0,45 / 0,55	120
Anlagen zur Kälteerzeugung								
Kompressionskälteanlage (Turbo)	15	2	1,5	1	$4991,34 \cdot \dot{Q}^{-0,68} + 179,63$	$0,45^{3}$	0,00	6
LiBr Absorptionskälteanlage	18	1,5	1,5	0	$14740,21 \cdot \dot{Q}^{-0,685} + 3,29$	33,35	0,50	6
Luftkühler (Trocken, Horizontale Bauweise)	20	2	1,5	0	$37,419 \cdot \dot{Q} + 312,93$	22,76	0,00	35

¹ VDI 2067

² Förderung in Deutschland nach Bundesförderung für Energieeffizienz in der Wirtschaft- Modul 2: Förderung 45% für nicht KMU + 10% für KMU; für ausgewählte Kälteanlagen nach der BAFA Kälte-Klima-Richtlinie bis maximal 50%

 $^{^3}$ Berechnung der realen Leistungszahl: $\varepsilon_{real} = G_{WP} \cdot \frac{T_2}{T_1 - T_2} \min \left(T_1 - Verfl "ussiger, T_2 - Verdampfer" \right)$

⁴ Bei überhitztem Dampf kann die Sattdampftemperatur bis zu 100 K überschritten werden [37]

⁵ Bei Absorptionskälteanlagen wird üblicherweise der COP zur Beurteilung der Effizienz eingesetzt. Dieser setzt die Nutzkälte ins Verhältnis zur benötigten Antriebswärme. Die benötigte elektrische Energie für Pumpen und weitere Komponenten ist vergleichsweise gering. Nach [44] kann $\dot{Q}_{Kalte,Nutz}/P_{et} = 27kW/0,6kW = 33,3$ bestimmt werden. [44]

⁶ Zur Bereitstellung der Nennkälteleistung werden im Durchschnitt 4,4% der Nennkälteleistung zum Betrieb der Ventilatoren und der Solepumpe benötigt. [43]

⁷ Bei den Kälteanlagen wird die bereitgestellte Kälteleistung ins Verhältnis zur aufgebrachten elektrischen Leistung gesetzt $EER = Q_{th}/P_{el}$.

Probe der Identifizierung des globalen Optimums Solver-Vergleich

Fallstudie	Dimensionen der			Minimaler Utility	Mittlere
	Transportmatrix			Einsatz [kW]	Rechenzeit [s]
1	7 x 5	Pinch-Analyse		1.000	-
		Lineare	CBC	1.000	0,02434
$\Delta T_{\text{min}} = 10 \text{K}$		Optimierung	CPLEX	1.000	0,01721
		(LP)	GUROBI	1.000	0,02709
		Pinch-Analyse		15.425	-
2	58 x 64	Lineare	CBC	15.425	1,68908
$\Delta T_{\text{min}} = 10 \text{K}$	36 X 04	Optimierung	CPLEX	*	*
		(LP)	GUROBI	15.425	1,93403
		Pinch-Analyse		10.050	-
$3 \\ \Delta T_{\min} = 5 K$	209 227	Lineare	CBC	10.050	733,442
	308 x 227	Optimierung	CPLEX	*	*
		(LP)	GUROBI	10.050	740,096

^{*} Berechnung nur bis maximal 6 HS und 6 CS möglich

