

# Dynamic Simulation of the Imbalance Netting Process and Cross-Border Activation of the Automatic Frequency Restoration Process

# Marcel Topler, Boštjan Polajžer



Faculty of Electrical Engineering and Computer Science 16. Symposium Energieinnovation Graz/Austria, 12. – 14. February 2020



#### **INTRODUCTION**



## Frequency control

- Imbalance between production and consumption causes frequency deviation from nominal value.
- The size and duration of the frequency deviation must stay within given target values.



Nominal frequency

# Load control between Control Areas (CAs)

- The production within the CA must be controlled in order to maintain **scheduled power interchanges** between CAs due to the tie-lines.
- Deviation from scheduled power interchanges may lead to additional power flows that can exceed the **transmission capacities** of the tie-lines.

# Load-Frequency Control (LFC) decreases:

• Frequency deviations

 $\Delta f_i = f_{\mathrm{a}i} - f_{\mathrm{s}i}$ 

• Interchange power variations

 $\Delta P_i = P_{\mathrm{a}i} - P_{\mathrm{s}i}$ 

• Area Control Error is given as

$$ACE_{i}' = \Delta P_{i} + B_{i} \Delta f_{i}$$

- $P_{ai}$  and  $f_{ai}$  measured values
- $P_{si}$  and  $f_{si}$  scheduled values
- $B_i$  frequency bias coefficient
- LPF Low Pass Filter
- PI Proportional-Integral Controller
- SH Sample and Hold (2 s)
- $\Delta P_{sci}$  Scheduled Control Power
- $\Delta P_{ei}$  Electrical Control Power



Î ÎÎÎÎ 1....

- Implementation of INP in LFC structrure
- Input variable is demand power ۲

$$P_{\mathrm{d}i}' = \Delta P_{\mathrm{e}i} - ACE_i$$

Output variable is correction power ۲



 $P_{\mathrm{d}N}$ 

- Maximal compensation with a limit of  $P_{di}$  and the limit of available transmission capacity  $P_{ATCii}$ . •
- Proportional to imbalance distribution is used. ۲

## Objective of INP

- To **compensate** power deviations between CAs with **opposite signs**.
- To eliminate the activation of control reserve with opposite signs.
- To **reduce** the activation of secondary control reserve.

#### Economical view

- Developed due to the **high cost** of balancing energy.
- To **reduce** power deviations between CAs.
- By regulating the activation of the balancing energy between CAs, **high economic savings** are possible.

## Technical view

• **Release** of control reserve and reduction of balancing energy.

- **Physical** connection between CA<sub>1</sub>-CA<sub>2</sub> and CA<sub>2</sub>-CA<sub>3</sub>.
- All three CAs connected with INP optimization through virtual tie-lines.
- **Condition** for INP:

 $(sign)P_{d1} \neq (sign)P_{d2} \neq (sign)P_{d3}$ 



Figure 3: Steady-state correction value calculation with INP optimization.



- Implementation of the cross-border activation of aFRP in LFC structrure
- Input variable is demand power

$$P_{\mathrm{d}i}^{*} = \Delta P_{\mathrm{e}i} - ACE_{i}$$

Output variable is correction power



aFRP

 $P_{dN}^{*}$ 

Maximal compensation with a limit of  $P_{di}$  and the limit of available transmission capacity  $P_{ATCii}$ . ۲

# 

## Objective of the cross-border activation of aFRP

- To **compensate** power deviations between CAs with **equal signs**.
- To activate the secondary control reserve in neigbouring CAs.
- To **reduce** the activation of secondary control reserve in its own CA.

## Economical view

- Developed due to the additional **cost optimization** and **high cost** of balancing energy.
- By activating the secondary control reserve in neigbouring CAs, high economic savings are possible.

# Technical view

• **Release** of control reserve and reduction of balancing energy.

- **Physical connection** between  $CA_1$ - $CA_2$  and  $CA_2$ - $CA_3$ .
- All three CAs connected with aFRP optimization through virtual tie-lines. •
- **Condition** for aFRP: •
  - $(sign)P_{d1} = (sign)P_{d2} = (sign)P_{d3}$

$$CA_1$$
,  $CA_2$  and  $CA_3 -$ **short**  $\rightarrow$  **import**

CA<sub>3</sub> activated: • **0.3***P*<sub>cor3</sub> in CA<sub>1</sub> in CA<sub>2</sub>



Figure 5: Steady-state correction value calculation with aFRP optimization.





Figure 6: Block diagram of a single *i*-th CA.

#### **TESTING CASES**

- **Separate dynamic simulations** for the system with INP and **separate** for the system with aFRP.
- Step changes of loads for three CAs with INP
  - Case 1: at t = 10 s,  $\Delta P_{L1} = -0,06$  pu,  $\Delta P_{L2} = -0,04$  pu and  $\Delta P_{L3} = 0,08$  pu



Figure 7: Step change of  $\Delta P_{Li}$  used in numerical simulations for three CAs with aFRP.

Step changes of loads for three CAs with cross-border activation of aFRP

- Case 1: at t = 10 s,  $\Delta P_{L1} = 0,04$  pu,  $\Delta P_{L2} = 0,06$  pu in  $\Delta P_{L3} = 0,08$  pu
- Case 2: at t = 100 s,  $\Delta P_{L1} = -0.04$  pu,  $\Delta P_{L2} = -0.06$  pu in  $\Delta P_{L3} = -0.08$  pu



Figure 8: Step change of  $\Delta P_{Li}$  used in numerical simulations for three CAs with INP.

#### **RESULTS TO STEP CHANGES OF LOADS WITH INP**

- Frequency deviation  $\Delta f_i$ , area Control error  $ACE_i$  and scheduled control power  $\Delta P_{sci}$
- Reduced  $\Delta f_i$  in Case 1, increased absolute value of  $\Delta f_2$  and  $\Delta f_3$  in Case 2 with INP
- Reduced  $ACE_i$  and  $\Delta P_{sci}$  with INP



"wo" is without INP and "w" is with INP.



#### **RESULTS TO STEP CHANGES OF LOADS WITH INP**

- Electrical control power  $\Delta P_{ei}$ , interchange power variation  $\Delta P_{i}$ , demand power  $P_{di}$  and correction power  $P_{cori}$
- Reduced  $\Delta P_{e_i}$ , increased  $\Delta P_i$  with INP
- Opposite sign of  $P_{di}$  and  $P_{cori}$



#### **RESULTS TO STEP CHANGES OF LOADS WITH aFRP**

- Frequency deviation  $\Delta f_i$ , area control error  $ACE_i$  and scheduled control power  $\Delta P_{sci}$
- Reduced  $\Delta f_i$  with INP
- Increased ACE<sub>1</sub> and ACE<sub>2</sub>, reduced ACE<sub>3</sub>
- Increased  $\Delta P_{sc1}$  and  $\Delta P_{sc2}$ , reduced  $\Delta P_{sc3}$



- $0.7P_{corj}^{*}$  in CA<sub>1</sub>
- $0.3P_{corj}^*$  in CA<sub>2</sub>





#### **RESULTS TO STEP CHANGES OF LOADS WITH aFRP**

- Area control error  $ACE_i$  and scheduled control Power  $\Delta P_{sci}$
- Simulation time 900 s
- Steady-state value

- CA<sub>3</sub> activated:
- 0.7P<sub>corj</sub><sup>\*</sup> in CA<sub>1</sub>
  0.3P<sub>cori</sub><sup>\*</sup> in CA<sub>2</sub>



- Electrical control power  $\Delta P_{ei}$ , interchange power variation  $\Delta P_{i}$ , demand power  $P_{di}$  and correction power  $P_{cori}$
- Increased  $\Delta P_{e1}$  and  $\Delta P_{e2}$ , reduced  $\Delta P_{e3}$ , increased  $\Delta P_i$  with aFRP
- Opposite sign of  $P_{di}$  and  $P_{cori}$



"wo" is without INP and "w" is with INP.

 $CA_3$  activated:

- $0.7P_{corj}^*$  in CA<sub>1</sub>
- $0.3P_{corj}^*$  in CA<sub>2</sub>



#### CONCLUSION

- INP and cross-border activation of aFRP **reduce** frequency deviation.
- Cases of frequency quality **deterioration** can occur.
- Area control error, scheduled control power and electrical control power are:
  - Reduced with INP.
  - **Reduced** with cross-border activation of aFRP, when CA activates the secondary control reserve in neigbouring CAs.
- **Smaller** activation of secondary control reserve.
- INP and cross-border activation of aFRP:
  - **Release** regulating reserve.
  - **Reduce** balancing energy.
- **Future work** should focus on the dynamic dimensioning of regulating reserve with respect to INP and cross-border activation of aFRP.
- Possible over dimension of regulating reserve could be decreased.





# Thank you for your attention!



FERI

Faculty of Electrical Engineering and Computer Science