Analyse der Einsatzmöglichkeiten von Batteriespeichern in kombiniertem Einsatz am Day-Ahead und Sekundärregelmarkt

Felix Nitsch, Marc Deissenroth

16. Symposium EnergieinnovationTU Graz, 14. Februar 2020

Cofördert durch

aufgrund eines Beschlusses des Deutschen Bundestages

Einführung in die Arbeiten / Motivation

Hintergrund:

- Transformation des Energiesystems
- Batteriespeicher = Schlüsseltechnologie

Ziel:

- Potentiale und Erlöse der Schlüsseltechnologie

Methode:

- Analyse historischer Zeitreihen Sekundärregelmarkt (SRL)
- Agentenbasiertes Fundamentalmodell: Day-Ahead Markt (DA) und SRL-Markt
- Optimierungsmodell: Erlöspotentiale
- Strategie: Arbitrage (DA) & Systemdienstleistung (SRL)

Zeitserienanalyse – vier beispielhafte Tage

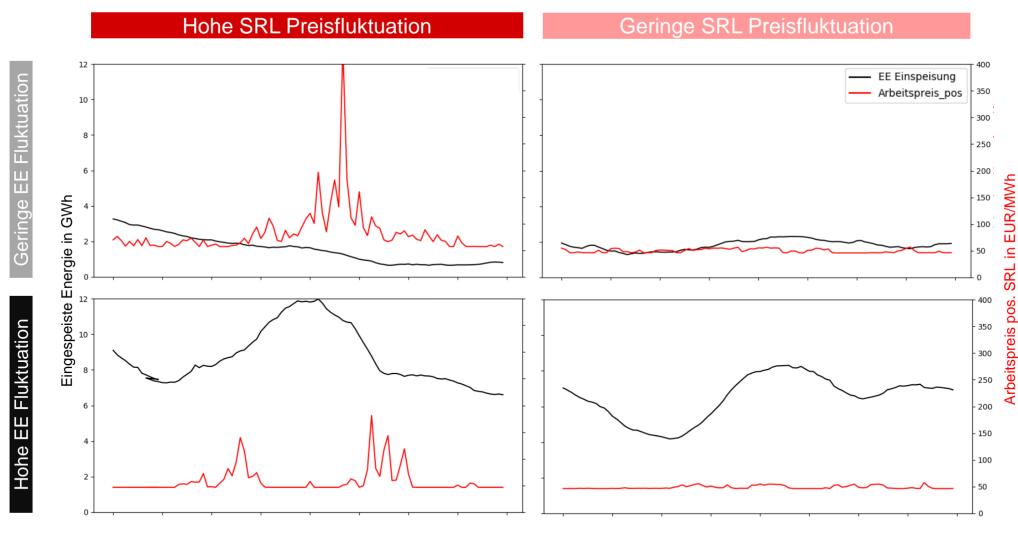
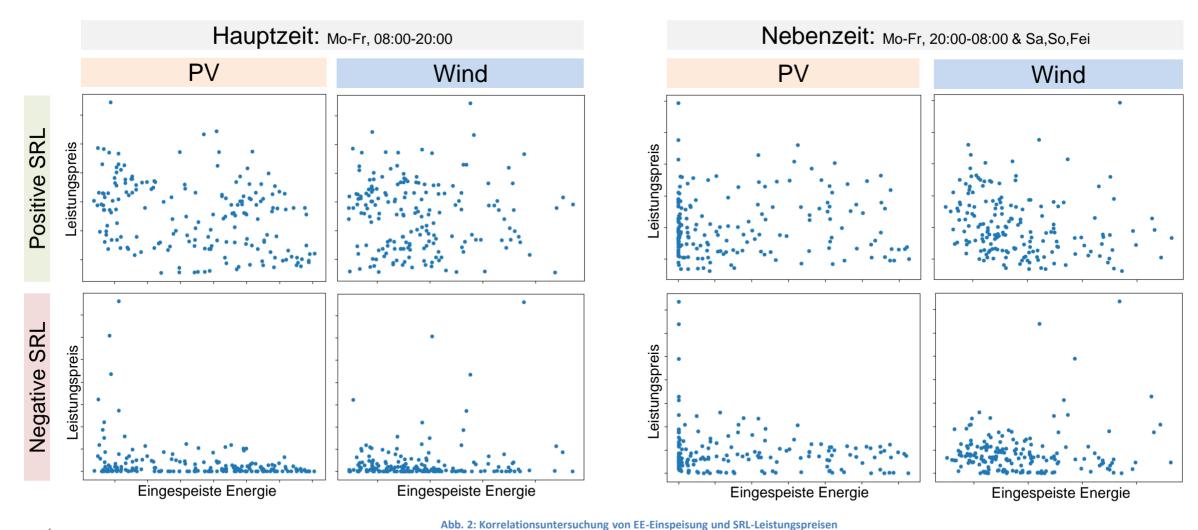



Abb. 1: EE-Einspeisung und Arbeitspreisfluktuation an vier verschiedenen Tagen im Jahr 2017

Zeitserienanalyse – Korrelation EE-Einspeisung und SRL-Leistungspreise

DIR

Beobachtungszeitraum: 12.01.2015 bis 31.12.2017

Fundamentale Modellierung

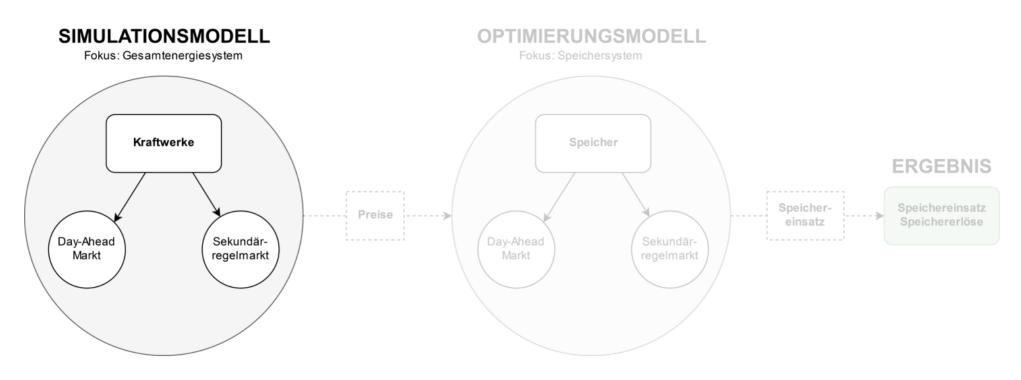


Abb. 3: Schematische Darstellung der Kopplung der beiden Modelle AMIRIS (links) und GAMS (rechts)

Modellaufbau AMIRIS

Input

- Einspeisung EE
- Lastzeitreihen
- Kraftwerkspark
- Effizienzen
- Verfügbarkeiten
- Brennstoffpreise
- CO₂ Preise

Output

- Elektrizitätspreise
- Kraftwerks Dispatch
- Speicher Dispatch
- Marktwerte
- Emissionen
- Systemkosten

Rundenbasierte Simulation mit zeitlicher Auflösung von einer Stunde in einem Knoten

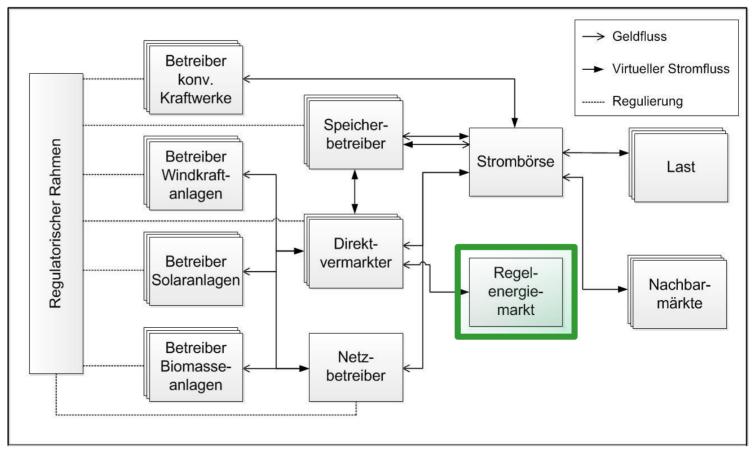


Abb. 4: Modellaufbau des agentenbasierten Simulationsmodells AMIRIS

Gebotslogik am SRL-Markt

Idee:

Vergleich potentieller Einnahmen DA & SRL Markt

Annahmen:

- Prognose des DA-Preises bekannt
- SRL-Nachfrage bekannt
- Stündliche Gebotslegung
- SRL Marketräumung vor DA Markträumung

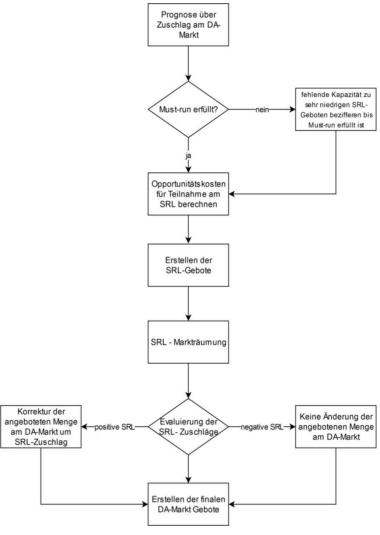


Abb. 5: Logik der Gebotslegung am SRL-Markt

Fundamentale Modellierung

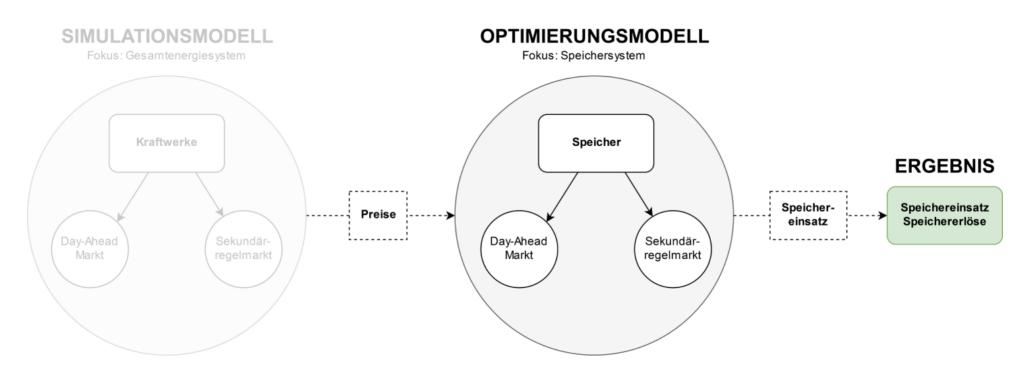


Abb. 3: Schematische Darstellung der Kopplung der beiden Modelle AMIRIS (links) und GAMS (rechts)

Zielfunktion: Maximierung der Gesamteinnahmen durch Arbitrage am DA Markt &

Systemdienstleistung am SRL Markt

Technische Spezifikationen: Speicherkapazität = 1 MWh

Ladestand zu Beginn = 0.5 MWh

Leistung durch E2P-Rate = [1, ..., 10]

Roundtripeffizienz = [85%, 87.5%, 90%]

Keine Abnutzung

Weitere Annahmen: Keine Steuern/Marktteilnahmekosten/Prägualifikationskosten

Perfekte Voraussicht für alle Preise und Abrufmengen

Szenario

- "Gesamtwirtschaftliche Effekte der Energiewende" (Lutz et al. 2018)
- Untersuchungsjahr: 2030
- CO₂ Reduktion bis 2050 von 80-85%
- CO₂-Preis 35€/t
- Hoher Anteil Erneuerbarer Energien (EE)
- SRL-Markt bedient von konv. Kraftwerken und EE
- Variation Low/Mid/High und EE (ja/nein)

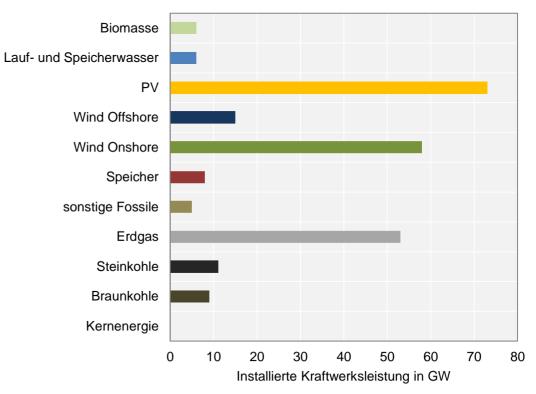


Abb. 6: Kraftwerksleistung im Jahr 2030 nach Technologie (Lutz C et al. 2018)

Ergebnisse: Börsenpreise am DA-Markt

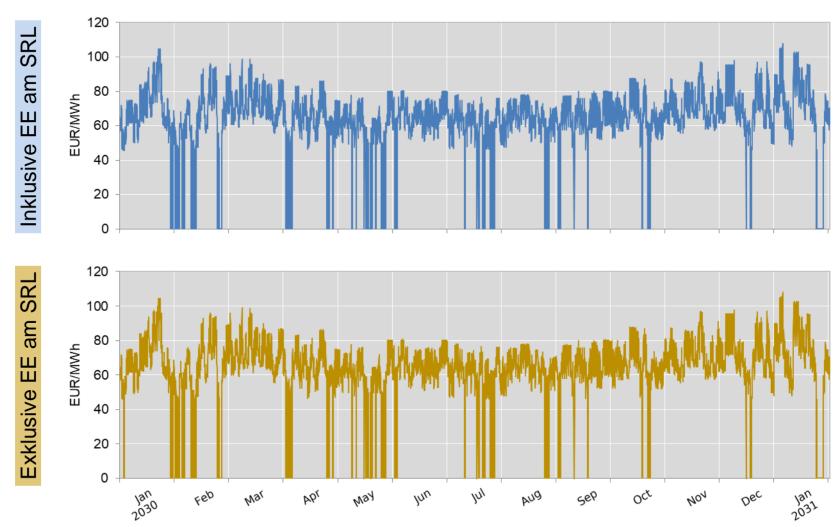


Abb. 7: Börsenpreise am DA-Markt wenn EE auch SRL bereitstellen (oben) bzw. wenn SRL ausschließlich von konventionellen Kraftwerke bedient wird (unten)

Ergebnisse: Durchschnittliche Leistungspreise für positive SRL

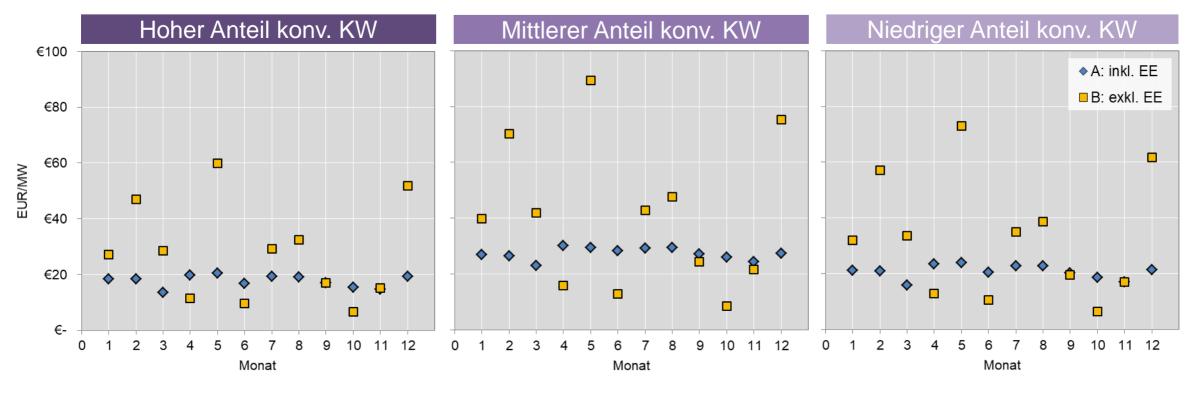


Abb. 8: Durchschnittliche monatliche, mengengewichtete Leistungspreise für positive SRL-Leistung bei unterschiedlichen Anteilen an konventionellen Kraftwerken (hoch, mittel, niedrig) und jeweils mit EE (blau) und ohne EE (orange)

Ergebnisse: Erlöse am DA- & SRL-Markt (historisch, 2016)

Tab. 1: Jährliche Erlöse pro MWh_{inst} eines Speichers im historischen Referenzszenario

		Roundtrip Efficiency					
		85%	87,50%	90%			
E2P	1	26,591 €	27,076 €	27,578 €			
	2	15,975 €	16,408 €	16,859 €			
	3	11,889 €	12,278 €	12,684 €			
	4	9,635 €	9,985 €	10,352 €			
	5	8,152 €	8,470 €	8,802 €			
	7.5	5,917 €	6,167 €	6,427 €			
	10	4,658 €	4,860 €	5,071 €			

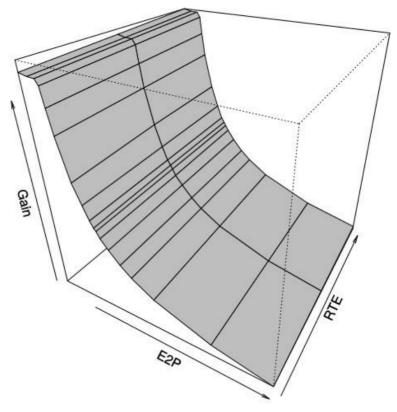


Abb. 9: Visualisierung der Änderung der jährliche Erlöse pro MWh_{inst} eines Speichers im historischen Referenzszenario unter Veränderung der E2P-Rate und der Gesamteffizienz

Ergebnisse: Erlöse am DA- & SRL-Markt (Szenario)

Tab. 2: Jährliche Erlöse pro MWh_{inst} eines Speichers im vorgestellten Szenario

		Roundtrip Efficiency = 85 %				
		A: inkl. RE	B: exkl. RE			
	1	10,882 €	11,692 €			
	2	8,370 €	8,815 €			
	3	7,307 €	7,601 €			
E2P	4	6,620€	6,823 €			
	5	6,078 €	6,227 €			
	7.5	4,970 €	5,047 €			
	10	4,120 €	4,171 €			

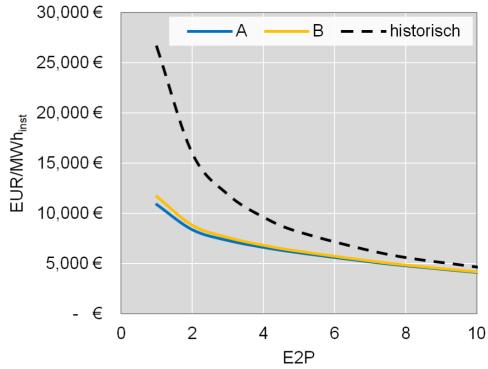


Abb. 10: Jährliche Erlöse pro Mwh_{inst} eines Speichers im dargestellten Szenario sowie im Referenzszenario

Diskussion

- Regelenergienachfrage/-abruf schwierig zu modellieren
- Perfekte Voraussicht
- Zusätzliche Einnahmequellen: Intraday- & Primärregelenergiemarkt
- Konkurrenzsituation in Zukunft:
 - Verzahnung von Märkten
 - Europäisierung des Stromhandels
- Zusätzliche Technologien für Systemdienstleistungen unberücksichtigt
 - z.B.: Demand side management, abschaltbare Lasten, P2X, E-Mobilität, etc.
- Nebenkosten nicht berücksichtigt
 - z.B.: Marktregulierungen, Betriebskosten, Abgaben und Präqualifikationskosten

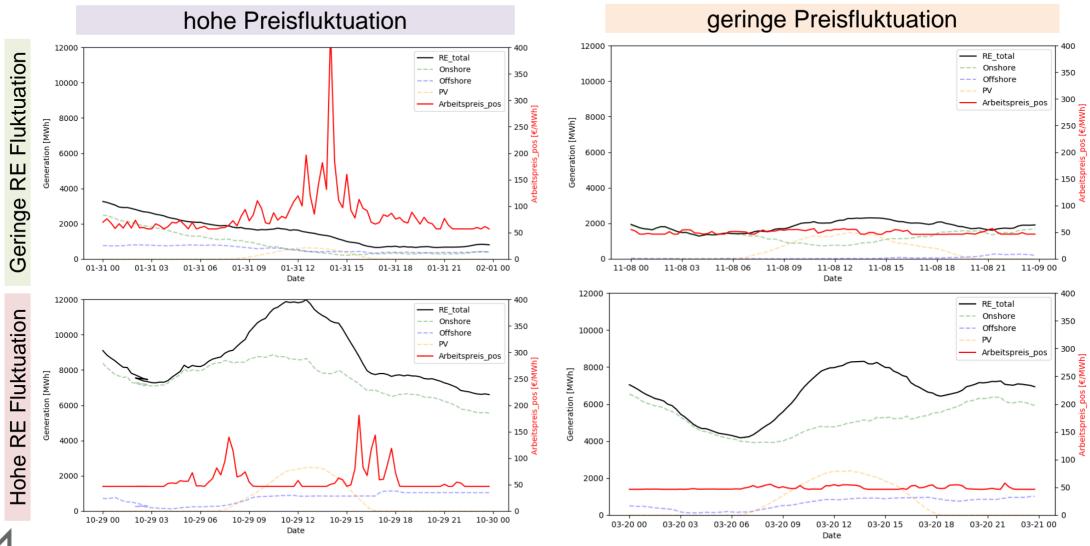
Schlussfolgerungen

- Batterien: Schlüsseltechnologie zur Energiesystemtransformation
- Vielfältige Einsatzbereiche: Arbitrage und Systemdienstleistung auf Regelmärkten
- Herausfordernd den zukünftigen Bedarf an Regelleistung zu schätzen
- Fundamentale Modellierung lässt betriebswirtschaftliche Bewertung von Speichern zu
- Leistungspreise am SRL-Markt bei Beteiligung von EE tendenziell niedriger & geringere Streuung
- DA-Börsenpreise vom SRL-Markt unabhängig
- Erlöspotentiale für Batteriespeicher stark von E2P und weniger von RTE abhängig
- Ergebnisse von Unsicherheiten geprägt und nur unter präsentierten Randbedingungen gültig

Kontakt:

Felix Nitsch Marc Deissenroth felix.nitsch@dlr.de marc.deissenroth@dlr.de

DLR | Institut für Technische Thermodynamik | Abteilung für Energiesystemanalyse DLR | Institut für Technische Thermodynamik | Abteilung für Energiesystemanalyse



Zeitserienanalyse – vier beispielhafte Tage

Gebotslegung

$$LP_{pos} = \begin{cases} p - c, & c \leq p \\ (c - p) * \frac{L_{min}}{L_{pos}}, & c > p \end{cases}$$

$$LP_{neg} = \begin{cases} 0, & c \leq p \\ (c - p_h) * \frac{(L_{min} + L_{neg})}{L_{neg}}, & c > p \end{cases}$$

$$(1)$$

$$LP_{neg} = \begin{cases} 0, & c \leq p \\ (c - p_h) * \frac{(L_{min} + L_{neg})}{L_{neg}}, & c > p \end{cases}$$

(2)
$$LP_{pos}$$
 Leistungspreis positive SRL LP_{neg} Leistungspreis negative SRL AP_{pos} Arbeitspreis positive SRL AP_{neg} Arbeitspreis negative SRL C Grenzkosten

$$AP_{pos} = c$$

$$AP_{neg} = 0$$

(3)
$$L_{min}$$
 Mindestleistung L_{pos} Angebotene Leistung positive SRL L_{neg} Angebotene Leistung negative SRL

Erwarteter DA-Preis

Optimierungsmodell zur Analyse der wirtschaftlichen Potentiale

Zielfunktion: $Rev_{Total} = \sum_{i=1}^{8760} Rev_{DA,i} + Rev_{SRL,i}$

Erlöse am DA Markt: $Rev_{DA,i} = p_{DA,i} * (E_{DA,sell,i} - E_{DA,buy,i})$

Erlöse am SRL Markt: $Rev_{SRL,i} = Rev_{SRL,P,i} + Rev_{SRL,E,i}$

 $Rev_{SRL,P,i} = p_{SRL,P,positiv,i} * P_{SRL,positiv,i} + p_{SRL,P,negativ,i} * P_{SRL,negativ,i}$

 $Rev_{SRL,E,i} = p_{SRL,E,positiv,i} * E_{SRL,positiv,i} + p_{SRL,E,negativ,i} * P_{SRL,negativ,i}$

Technische Spezifikationen: Kapazität = 1 MWh

Ladestand zu Beginn (0.5 MWh)

Leistung abgebildet durch E2P-rate = [0.1,...,10]

Roundtripeffizienz = [85%, 87.5%, 90%]

Keine Abnutzung durch Ladezyklen

Weitere Annahmen: Keine Beschränkungen der Anzahl der Gesamtzyklen,

Keine Steuern/Marktteilnahmekosten/Präqualifikationskosten

Perfekte Voraussicht für alle Preise und Abrufmengen

Tab. A1: Auflistung der Kraftwerksanteile nach Technologie, welche SRL Leistung erbringen in %. Die Variationen Low, Mid, High entsprechen der Variation des SRL-Bedarfs (Anteile nach Hasche, B., Haiges, M. & Schulz, S., 2016. Die Integration von Batteriespeichern am Regelleistungsmarkt - eine modellgestützte Bewertung, 50Hertz)

Technologie	Anteil	der Kra	aftwerke,	, welche Anteil der Kraftwerke, welche		, welche	
	positive SRL anbieten in %				negative SRL anbieten in %		
	Low	Mid	High		Low	Mid	High
Steinkohle	1.1%	2.1%	3.2%		1.1%	2.1%	3.2%
Braunkohle	0.5%	0.9%	1.4%		0.5%	0.9%	1.4%
Erdgas	3.4%	6.8%	10.2%		3.1%	6.1%	9.2%
Öl	3.9%	7.8%	11.7%		2.2%	4.3%	6.5%
Wind/PV/Biomasse	5%	5%	5%		5%	5%	5%

Ergebnisse: Kraftwerkseinsatz am DA-Markt

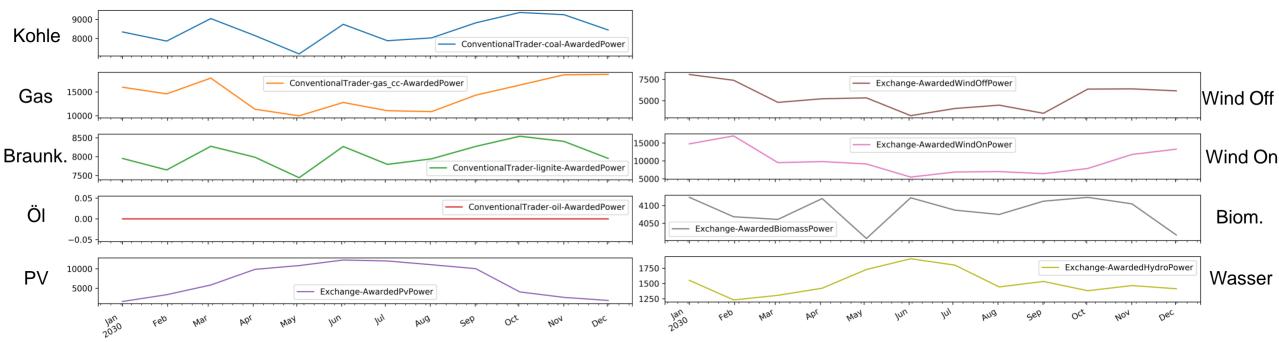


Abb. A2: Bezuschlagte Leistung am DA-Markt Markt für alle Technologien Technologien aufgeschlüsselt

