Flexible Software-Umgebung für Strommarkt- und Netzmodelle

VAMOS (VARIED MARKET-MODEL OPERATING SYSTEM)

Graz, 13.02.2020

Österreich braucht Strom.

© Austrian Power Grid

Need to develop a Power Market Model?

Understand fundamental changes in the European power market

- Complexity of power systems makes it impossible to manually asses simple input/output relations.
- Hence, power market models are needed for detailed assessments and estimations (market design, bidding zone configurations, grid extensions, network development plans).
- In house development of a simulation and optimization tool started in 2013.
- First prototype (Matlab/GAMS) of a model to assess changes of BZ-configurations ready in 2015.

In house development project 2016-2019

- The first Bidding Zone Review (CACM Art. 31) triggered a further software development.
- The market model prototype was transferred to a software product.
- To make the tool user friendly for a broad range of experts from different departments, many process steps have been automated and complex interactions have been simplified.

Development of an own power market modelling simulation facility – VAMOS

VAMOS – Varied Market Model Operating System.

© Austrian Power Grid

Graz, 13.02.2020

Power market assessments I

A complex process chain – Market Coupling is only one part

Operating system?

In difference to a "plain" market model, VAMOS is an operating system

Challenges

- Infeasible or implausible outcomes of modules often lead to manual feedback loops between different modules (e.g. negative RAMs in FB capacity calculation).
- A lot of **data** to process, preparations and transformations of data for dedicated tools.
- **Distributed** in-house expert **knowledge** (market, grid operation and asset management).
- **Dependent on** (single) **experts** for performing simulations.
- Each scenario to be prepared separately and laboriously.
- Only one simulation per time.

Solutions

- Automation of process chain & consistency checks over process chain.
- Tools for big data transformation, formatting, visualization.
- Experts are brought together at one and easy accessible platform.
- Multiple experts can access and work with VAMOS on different tasks.
- Easy and quick tools for scenario set up & reusable editing-tasks.
- Parallel simulations & queueing.

Architecture

Web based access

Web Interface	VAMQS	
	Study Management	Base Case Wizard
	Scenario Editor & Task Management	Scheduler
	Result Map	Scheduler

Base Case Wizard

Step by step wizard for setting up a scenario base-case record

- Once a base-case record is set up, it can be re-used as a starting point for new scenarios
- Fundamental input data can be uploaded in csv or xlsx format
- Basic checks are immediately performed to ensure feasibility at the best
 - Plausibility checks of all uploaded data
 - Balance checks over the whole simulation area, each market area, and each grid element
 - Big advantage: infeasibilities and implausibilites can be caught or at least monitored at a very early stage

Study & Scenario Management

Tree oriented file management

- For calculations a new study can be set up.
- A study may consists of several scenarios.
- Different studies and scenarios can be viewed, copied, partly edited and executed by different users.
- Studies and scenarios can be archived, searched and the results could be compared using different criteria.

Scenario Editors & Task Management

Setting up new scenarios can be time consuming \rightarrow supporting tools

VAMOS Provides tools for supporting changes of base case scenarios

- Many assessments are **starting from base cases** → **sensitivities to be assessed**
- For example common TSO tasks: e.g. define a **new bidding zone**, building a **new line**, **grid node** or change a **NTC**.
- But also **other important parameters** can be changed easily: e.g. commodity prices, power plant phase outs, RES generation.
- Each setting from an editor can be saved as **task** and re-used for future set ups.
- These single tasks can be packed to a **bunch of tasks** → called project and also reused for upcoming set ups.

Scheduler

Customization, flexibility, scalability, parallel execution

The scheduler handles the calculation flow

- An assessment chain can be build up; called calculation rule
- Modules are batched and linked.
- Each module can be exchanged, adapted or extended → customized.
- Even different calculation rules can be used at a time

Parallel execution of scenarios

- Model chain is executed as defined in the configuration file and dependent on CPU load.
- VAMOS is able to keep processes in a queue and start them as soon as resources are available.
- Many scenarios can be started and processed in parallel.
- With current APG hardware ~10 scenarios (8760h) can be calculated in parallel.

© Austrian Power Grid

Result Map

Detailed georeferenced result depiction

Quick and user friendly data exploration

- Results can be viewed on a georeferenced-map immediately after a calculation step has finished.
- Detailed information can be shown and selected for all timestamps.
- Raw data can be exported in csv format.

VAMOS

LIVE DEMO

Valentin Wiedner

Market Management Teamleader Market Analysis valentin.wiedner@apg.at

Scheduler

Customization & parallel execution

The scheduler handles the calculation flow

- Modules are batched and linked.
- Each module can be exchanged, adapted or extended → customized.

Parallel execution of scenarios

- Model chain is executed as defined in the configuration file and dependent on CPU load.
- VAMOS is able to keep processes in a queue and start them as soon as resources are available.
- Many scenarios can be started and processed in parallel.
- With current APG hardware ~10 scenarios (8760h) can be calculated in parallel.

Redispatch Calculation

Aggregations & Result formatting

INTEGRAL 7

R

Advantages of VAMOS

 Transparent Sharing of expert knowledge Full transparency in data handling, transformation and formatting 	Customizable Sequence of model chain and core tools can be customized	 Base Case Wizard Guided base case building PEMMDB data can mostly be used as an input 	 Scenario Editors Easy and fast change of up-and-running base scenarios For supporting quick sensitivity calculations
 Role Management Different authorizations for users configurable Multi-client capability (planned) 	High Scalability VAMOS software architecture is set up with a high scalability	Easy User Access Web based	Tailor Made TSO assessment needs are directly addressed

© Austrian Power Grid

Graz, 13.02.2020

Workflow

Results Study "XYZ" **Basic Data** ENTRY (grid, power plants, commodity prices,...) processing Scenario#1 USER WI= processing Scenario#2 processing Scenario#3 Outage NTC Testrun Universe **RES Generation** Planning EVDE **FARE** Data Result processing **SE CA** Scenario#4 B/ E[®]₩1Z cenario BASE Editor Reservoir Level World Balance RECORD Market Areas Plants processing and Inflow Check Scenario#5 (Version x) Market Nodal Residua Grid Topology Residual Load Demand Load Check Check Calculation Rule x Transfer Topology Commodity processing Check Capacities Information Prices Sczenario#n

Fast and user friendly scenario set up

© Austrian Power Grid

Graz, 13.02.2020

Next Steps

Share expertise and know how.

- Change/integrate other tools & modules.
- Build up a community for multi-disciplinary simulations and calculations.
- Perform simulations and analysis of different current TSO questions coming from new regulations

