

Faculty of Electrical Engineering and Computer Science Power Engineering Laboratory

IMPACT OF THE LOAD MODELING ON THE OPTIMAL SELECTION OF ROOFTOP SURFACES FOR PV INSTALLATION

Nevena Srećković and Gorazd Štumberger

En nnov 2020 16. Symposium Energieinnovation | 12.02.–14.02.2020

Motivation

Numerous studies focus on:

- determining photovoltaic (PV) potential of rooftop surfaces
- PV system integration regarding the PV potential
- PV system integration regarding the distribution network (DN) operation
- participation of active elements
- optimization of DN operation

combining these approaches for optimization of DN operation

Research goal

Methodology for minimization of annual energy losses in DN by optimal placement of PV systems

- high-resolution PV potential of rooftop surfaces
- time-dependent network operation
- SOLVING THE PROBLEM OF SELECTION OF OPTIMAL ROOFTOP SURFACES FOR PV INSTALLATION

Identification of the additional factor:

dependency of power consumed from a supply voltage *i.e.* **LOAD MODELING**

Presentation overview

Introduction

Methodology

Case study on real urban low voltage DN

- test network
- operation scenarios

Results

Conclusion

Introduction

- Evolution of DN from a passive to an active element of electric power system
- Technical, economic, social, regulatory impact
 - Active participation of different elements of DN, promoted by political directives
 - Proliferation in renewable energy resources (DER) integration
 - Different methodologies for minimization of DN losses

Methodology

- Selection of rooftop surfaces for installation of PV systems, optimal from:
 - Solar energy availability standpoint
 PV potential assessment
 - Distribution network operation standpoint
 > minimization of annual energy losses
 > ensuring operational constraints

Layer 1: predprocessing LiDAR data

Eninnov 2020 16. Symposium Energieinnovation | 12.02.-14.02.2020

Layer 4: time-dependent loading and generation profiles

Simplified block diagram

Solar and PV potential assessment module

LiDAR data, pyranometer measurements of direct and diffuse irradiance, algorithm for consideration of shadowing, module inclination and efficiency characteristics $\prod \prod \prod \prod$

- Solar and PV potential assessment
- Categorization of rooftop surfaces (suitability categories: very high, high, medium, low)
- Hourly power generation profiles ••

Optimization module

Optimization: Additional PV generation, yielding minimum annual energy losses determined

Differential Evolution

Optimal solution is the one yielding the minimum annual energy losses

Objective function:

$$q_{\rm fun} = \frac{W_{\rm loss_addPV}}{W_{\rm loss}} + p$$

Penalties *p* ensure that voltage profiles and currents are kept within the prescribed limits

Test DN – real urban LV

LV node	Number of connected	
	rooftops	
3	3	
5	3	
8	3	
9	5	
10	3	
12	4	
14	5	
17	7	
20	4	
21	2	
22	2	
23	2	
24	2	
25	4	
26	2	
27	3	
28	4	
29	3	
31	1	
32	3	
33	3	
38	1	

DE search parameters $\{x_{p,1}, x_{p,2} \dots x_{p,22}\}$ – optimal locations for PV system installation

Loading model

Polynomial models of the active $P_{\text{load},n}$ and reactive powers $Q_{\text{load},n}$, consumed at node n

$$P_{\text{load,n}} = P_{\text{load,n}} \left(a_0 + a_1 |\underline{U}_n| + a_2 |\underline{U}_n|^2 \right)$$
$$Q_{\text{load,n}} = Q_{\text{load,n}} \left(r_0 + r_1 |\underline{U}_n| + r_2 |\underline{U}_n|^2 \right)$$

 (a_0, r_0) - dependence on the supply voltage <u>U</u>_n

 (a_1, r_1) - linear dependence on the supply voltage \underline{U}_n

 (a_2, r_2) - quadratic dependence on the supply voltage \underline{U}_n

 $a_0 + a_1 + a_2 = 1$ $r_0 + r_1 + r_2 = 1$

Optimization scenarios

Constant power loading model (CPM)

$$a_0 = r_0 = 1$$
 and $a_1 = a_2 = r_1 = r_2 = 0$.
 $P_{\text{load},n} = P_{\text{load},n}$
 $Q_{\text{load},n} = Q_{\text{load},n}$

Constant impedance loading model (CIM)

$$a_2 = r_2 = 1$$
 and $a_0 = a_1 = r_0 = r_1 = 0$.
 $P_{\text{load,n}} = P_{\text{load,n}} \left| \underline{U}_n \right|^2$
 $Q_{\text{load,n}} = Q_{\text{load,n}} \left| \underline{U}_n \right|^2$

Results: Original network operation

Results: Optimized network operation

	constant <u>power</u> loading model	constant <u>impedance</u> loading model
Original network losses	57.78 MWh	63.65 MWh
Losses after the optimization	38.79 MWh (32.9% reduction)	43.19 MWh (32.1% reduction)
Rated power of installed PV systems	267.0 kWp	287.9 kWp
Number of selected rooftop surfaces	32 whole, 11 partial	34 whole, 9 partial

- Evaluation of impact of load modeling on PV system system placement
- PV system integration → *increase of voltage profile*
- Results of a case study on a real urban LV DN :
 - increase in PV accommodation if the loading changes with supply voltage
- Importance of the load modeling consideration increases with the <u>participation of active elements</u> <u>in modern DN operation</u>

Faculty of Electrical Engineering and Computer Science Power Engineering Laboratory

Thank you for your attention!

a sist. Neve na Srećković, mag. inž. el Uni ve rza v Mariboru | University of Maribor **Fakulteta za elektrotehniko, računalništvo in informatiko Faculty of Electrical Engineering and Computer Science** Koroš ka cesta 46, 2000 Maribor, Slovenija T: +386 2 220 7056 E: nevena.sreckovic@um.si, feri.um.si

En nnov 2020

16. Symposium Energieinnovation | 12.02.–14.02.2020

Detailed block diagram

