

A METHODOLOGY OF TECHNOLOGICAL TRANSFORMATION TO CO₂ FREE INDUSTRY

Maedeh Rahnama Mobarakeh

Thomas Kienberger

Chair of Energy network technology/Montanuniversitaet Leoben

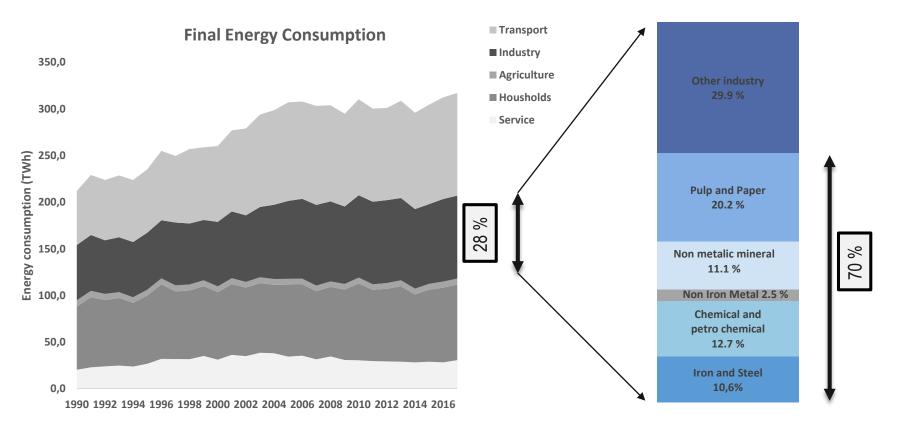
VORZEIGEREGION powered by ENERGIE

Content

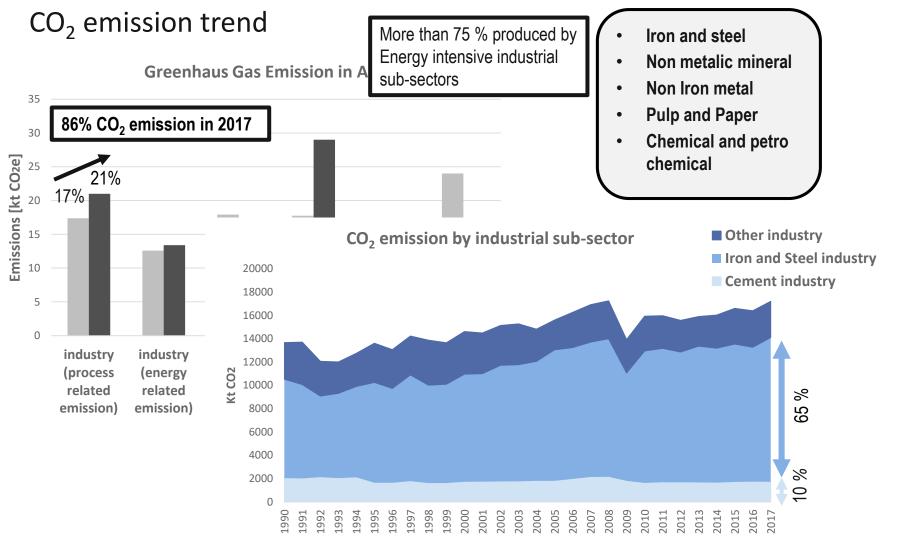
- Introduction and motivation
- Methodology description
- Overview of Austrian Industry sector
 - Final Energy Consumption
 - CO₂ emission
- Decarbonisation Abatement Options
- Decarbonisation Scenario development
- Conclusion
- Outlook

Introduction and motivation

- Final energy consumption by industry : 28%
- Process related CO₂ emission by industry : 21%
- According to the Paris agreement the Austrian industry intends to reduce GHG emissions <u>by 40% by</u> <u>2030</u> and <u>80-90% by 2050</u> compared to 1990 levels


Methodology

Literature Review	Literature Review	Scenario development	Energy System Modelling
Base year data extraction	 best available technology (BAT)/ innovative technology (IT) 	 Business as usual scenario (BAU) 	Load profile
Current process analysis	 CO₂ emission saving and Energy saving potential for each BAT/IT 	 Mitigation scenario (MT) 	 Time resolved energy system modelling HyFlow framework
key performance indicator	 Technology readiness level (TRL) OPEX / CAPEX 	Deep decarbonisation scenario (DDS)	model
Input data for modeling and Technology selection	Key Technology selection and data allocation	Scenario development	Infrastructure implementation analysis


Overview of Austrian Industry sector

• Final Energy Consumption trend

Overview of Austrian Industry sector

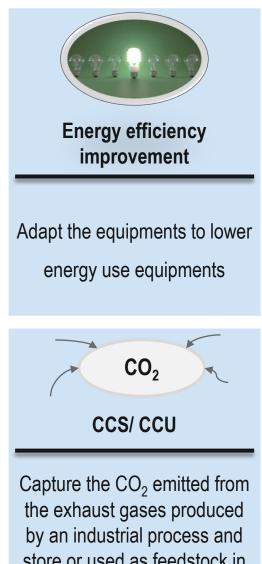
Decarbonisation Abatement Options

- **literature review** →scientific publications, the industrial sectors' climate roadmaps, reports from industrial development projects
- Best Available Technology (BAT):

state-of-the-art techniques \rightarrow Recommend for improving the energy efficiency of installations

Innovative Technology (IT):

new technologies that need to be further developed or are even only available on a laboratory scale \rightarrow Recommend for deep decarbonisation


Key Performance Indicator :

☑ Specific energy consumption (MWh/ ton of production)

 \square Specific CO₂ emission (Kton of CO₂/ton of production)

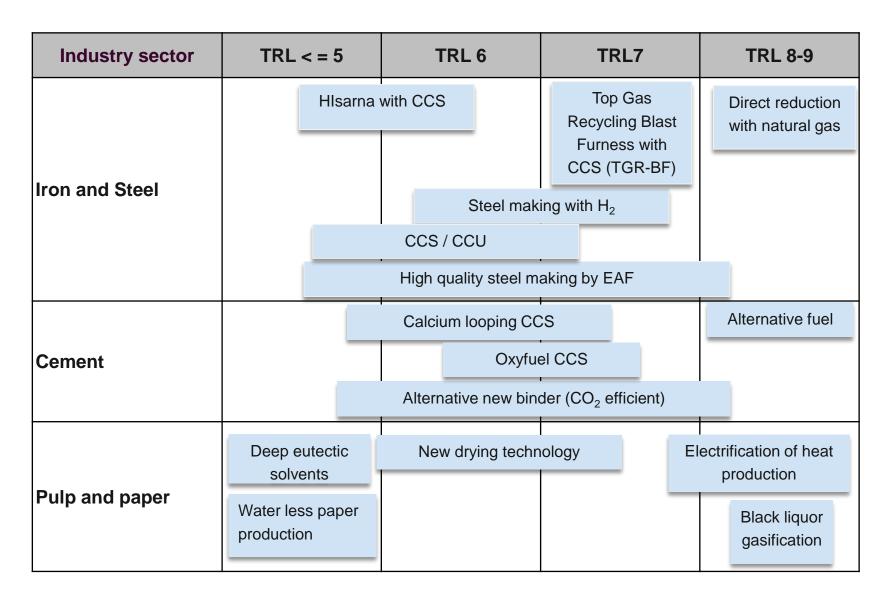
Decarbonisation Abatement Options

store or used as feedstock in other industry

Electrification

Replace fossil fuel with renewable electricity for heating e.g. electric furnaces or kilns, plasma or microwave technologies

Non-fossil fuel feedstock change, e.g., change in cement feedstock


Hydrogen

Replace feedstock or fuel with Hydrogen especially when the hydrogen is generated by zero-carbon electricity

Decarbonisation Abatement technology

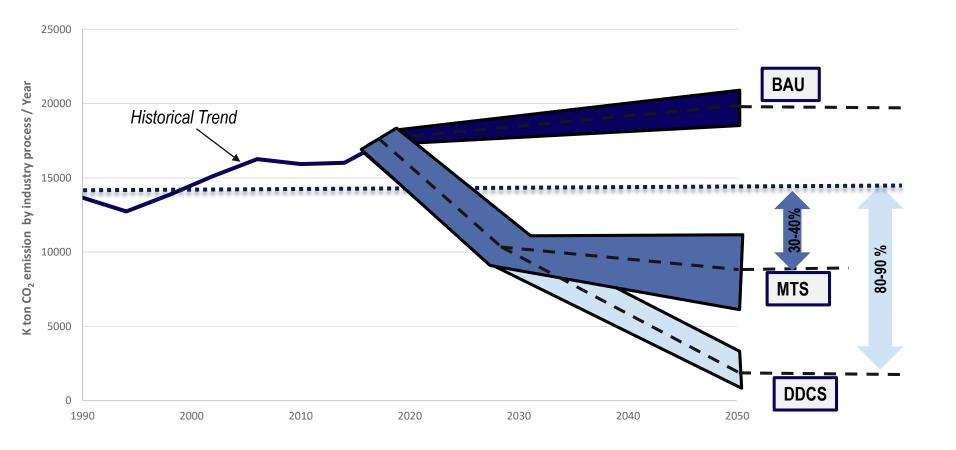
→ Technology Readiness Levels (TRL)

Scenario development

The Business as Usual Scenario (BAU)

➔ Without any significant change and by using the currently best available technologies (BATs) and energy policies.

The Mitigation Scenario (MGS)


→ in regards to the Austrian Climate and Energy Strategy #Mission 2030 and the current EU targets, is based on utilization of BATs and ITs with a short to medium-term implementation horizon and by especially considering the renewable energies as an important source of energy.

The Deep Decarbonisation Scenario (DDCS)

→a radical shift by focusing on individual innovative CO_2 emission reduction technology option for every sector as well as using the carbon capture storage and usage (CCS/ CCU) to achieve the Austria goal (80-90% reduction by 2050 compared to 1990)

Scenario development

- Industrial companies can reduce CO₂ emissions in various ways by combination of decarbonisation options such as energy efficiency improvements, electrification, using hydrogen, using biomass, CCS/ CCU, and other innovations
- Access to low-cost zero-carbon electricity is one of the important factor for electrification and decarbonisation of industry.
- The fossil fuel must be replaced by renewable energy sources and total primary energy consumption must be reduced significantly.
- The decarbonisation of the industrial sub sector requires more investments in industrial sites and must be accompanied by CO₂ -free electricity generation

- The Decarbonisation Scenario pathways for the Austrian industry will be developed in cooperation with industrial subsectors experts (in the planned NEFI workshop on 30 March 2020).
- The first results of the selected technologies and developed scenarios through the reduction of CO₂ emissions by the Austrian industry will be presented at the NEFI conference in November 2020, to which everyone is kindly invited.

Thank You For Your Attention

