

100 % Erneuerbare Energie für Österreichs Industrie

Teil 1 – Alternative Energieträger und Prozesse

Sophie Knöttner, Roman Geyer, Christian Diendorfer, Gerwin Drexler-Schmid 16. Symposium Energieinnovation, 12.-14.02.2020, Graz/Austria

Link zur IndustRiES-Studie:

https://www.klimafonds.gv.at/wp-content/uploads/sites/6/Studie_IndustRiES-2019_neu-1.pdf (Erstellt im Auftrag des Klima- und Energiefonds)

Szenarien

Anforderungen Energieinfrastruktur

IndustRiES

Erstellt im Auftrag des Klima- und Eners

Energieinfrastruktur für 100 % Erneuerbare Energie in der

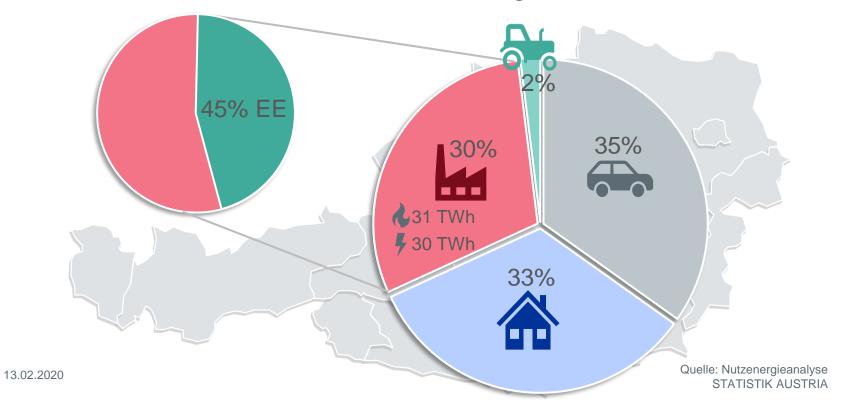
MOTIVATION

#mission2030

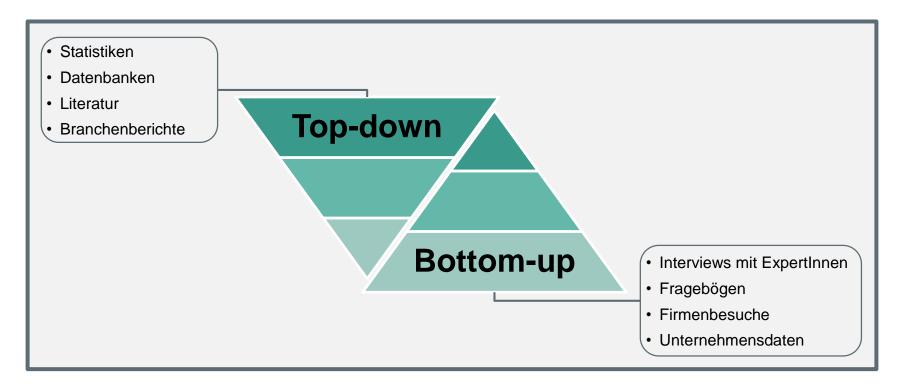
Die österreichische Klima- und Energiestrategie

- Strom und Wärme basierend auf Erneuerbaren.
- Verbesserte Energieeffizienz und Reduktion des Treibhausgasausstoßes
- Sichern der Wettbewerbsfähigkeit der Industrie
 - Sektorkopplung
 - Erhalt effizienter Bestandsanlagen
- Stärken der Industrie als Verbraucher und Ermöglicher (z.B. Abwärmenutzung)
 - o Dekarbonisierung durch Energieträgerwechsel und technologische Transformation
 - Dekarbonisierung durch (neue) Breakthrough-Technologien
- Schaffen und Bereitstellen einer Infrastruktur für ein nachhaltiges Österreich

DEKARBONISIERTE ENERGIEVERSORGUNG


100%

- ? Welche Anforderungen ergeben sich für die einzelnen industriellen Sektoren?
- ? Welche Energieträger werden eingesetzt? Wie können sie substituiert werden?
- ? Welche Energieträger braucht es und in welcher Menge?
- ? Wie können die Energiebedarfe gedeckt werden und welche Potenziale gibt es?
- ? Welche Anforderungen ergeben sich durch r\u00e4umliche und zeitliche Betrachtungen?


AUSGANGSLAGE (2017)

Endenergieverbrauch: 314 TWh

METHODIK - DATENBASIS

AUSGANGSLAGE: ANALYSE DER ENERGIEVERBRÄUCHE

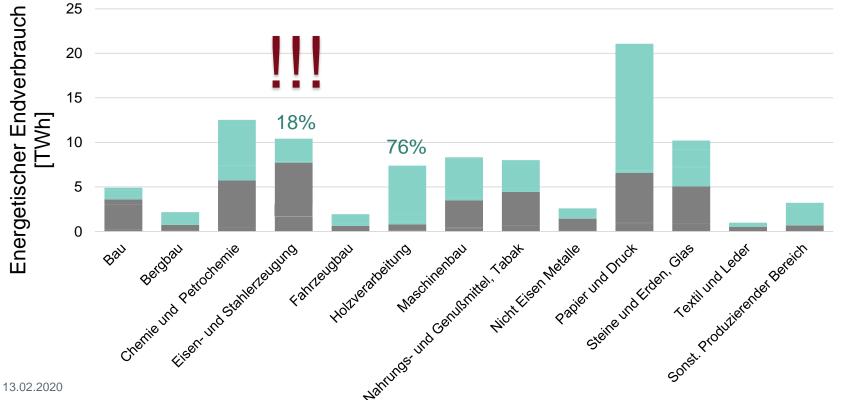
Basis: Energetischer Endverbrauch (EEV)

Bundeslandebene

Zeitraum: 1993 – 2017

20 Energieträger

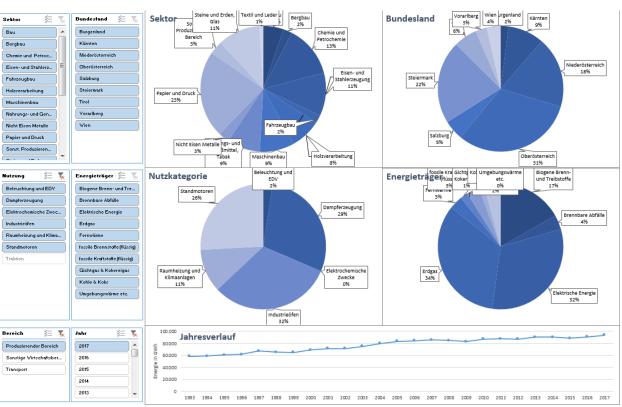
13 industrielle Sektoren


Energieintensiv	Energieextensiv
Eisen- und Stahlerzeugung	Fahrzeugbau
Chemie und Petrochemie	Maschinenbau
Nicht Eisen Metalle	Bergbau
Steine und Erden, Glas	Nahrungs- und Genußmittel, Tabak
Papier und Druck	Holzverarbeitung
	Bau
	Textil und Leder
	Sonst. Produzierender Bereich

6 Nutzenergiekategorien

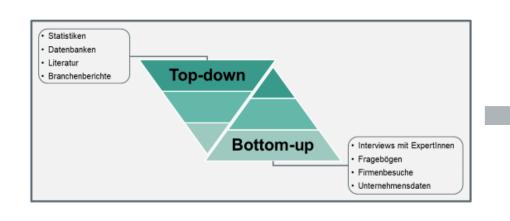
Nutzenergiekategorien	
Raumheizung und Klimaanlagen	
Dampferzeugung	
Industrieöfen	
Standmotoren	
Beleuchtung und EDV	
Elektrochemische Zwecke	

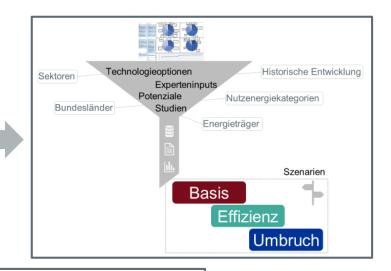
ENERGETISCHER ENDVERBRAUCH NACH ENERGIETRÄGER UND INDUSTRIESEKTOREN



NEAT <u>Nutzkategorie und Energie Analyse Tool</u> (Austria)

Tool-**Entwicklung:** Analyse und Auswertung der Datensätze (NEAT)


9 BL x 13 iS x 6 NFK x 10 ET = 7.020 Datenpro Jahr (Σ 1993-2017: 175.500)



BL: Bundesland | iS: industrieller Sektor | NEK: Nutzenergiekategorie | ET: Energieträger

SZENARIEN-ENTWICKLUNG

- Verhältnis Biogen/Elektrisch
- COP (Coefficient of Performance)
- Effizienzsteigerung

SZENARIEN

Brennstoffwechsel auf Erneuerbare

Basis

Niedertemperatur mittels Wärmepumpe

Umstellung fossiler Standmotoren auf elektrische Energie

Fossile (Kohle/Koks) bleiben in der Eisen- und Stahlerzeugung

Ausgangsbasis: Basisszenario

Effizienz

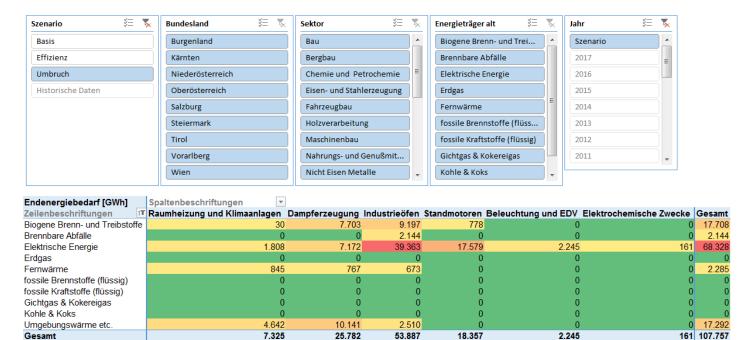
Dampferzeugung & Industrieöfen mittels Wärmepumpe

Prozesseffizienz auf Branchenebene

Fossile (Kohle/Koks) bleiben in der Eisen- und Stahlerzeugung

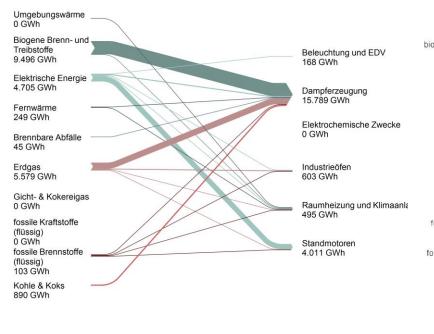
Ausgangsbasis: Effizienzszenario

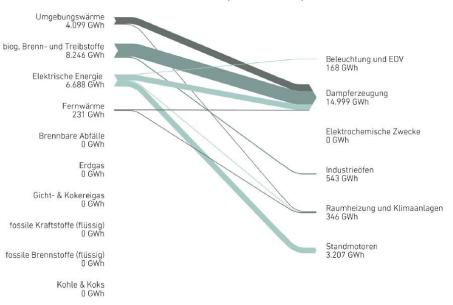
Umbruch


Höherer Anteil an Wärmepumpen

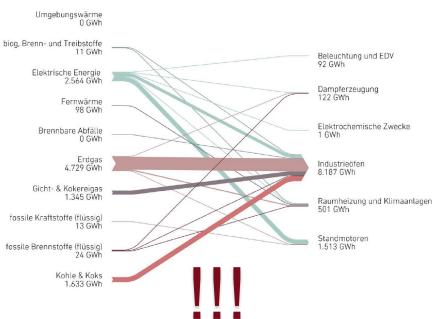
Biogene und brennbare Abfälle für Hochtemperatur-Anwendungen

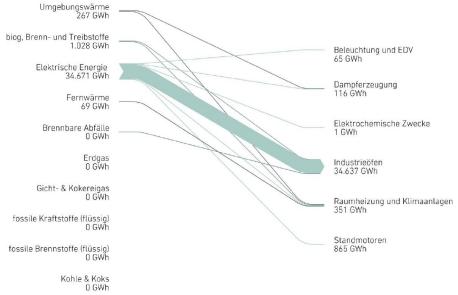
Eisen- und Stahlerzeugung: Direktreduktion mit Wasserstoff


SZENARIEN-VERGLEICH (NEAT)

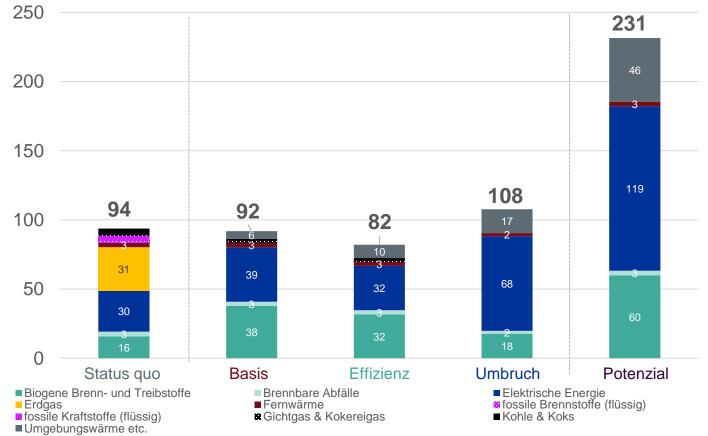

SANKEY-DIAGRAMME

Papier und Druck Status quo (21 TWh)

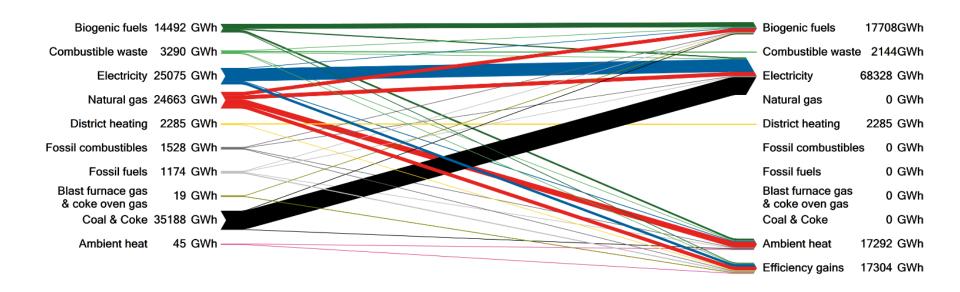

Papier und Druck Umbruch (19 TWh)


SANKEY-DIAGRAMME

Eisen- und Stahlherstellung Status quo (10 TWh)


Eisen- und Stahlherstellung Umbruch (36 TWh)

ERGEBNISSE – SZENARIENVERGLEICH



ERGEBNISSE - VERSCHIEBUNG DER EINGESETZTEN ENERGIETRÄGER

HANDLUNGSEMPFEHLUNGEN UND AUSBLICK

Energiepolitische Handlungsempfehlungen

- Verstärkter und unverzögerter Ausbau an erneuerbaren Energien und integrierten europäischen Energieinfrastrukturen
- Erhöhung der neuer Kopplungsstellen zwischen den Energiesektoren

FTI politische Handlungsempfehlungen

- Technologieentwicklung: Erhöhung der Energieeffizienz in der Industrie
- Demonstratoren: Validierung von Technologien und Systemlösungen

Ausblick

Basis für Elektrifizierungsszenarien (z.B.: IEA IETS Annex 19)

An EA Technology Collaboration Programme

Basis für weitere Analysen: Verbrauch und Bedarf Erneuerbarer (z.B.: NEFI)

VIELEN DANK!

Sophie Knöttner

Roman Geyer

Christian Diendorfer

Gerwin
Drexler-Schmid

PhD Student
Sustainable Thermal Energy Systems

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria sophie.knoettner@ait.ac.at | www.ait.ac.at