

RUHR-UNIVERSITÄT BOCHUM

MOTIVATIONS FOR AND IMPLICATIONS OF CAPACITY-CONSTRAINED ONSHORE RENEWABLE

Valentin Bertsch, EnInnov 2020, Graz, February 12th 2020

Motivations for and Implications of Capacity-constrained Onshore Renewable Power Generation Development *) Agenda

- Background and motivation
- Research questions
- Multi-method approach
- Selected results (note: research still ongoing)
- Discussion and conclusions
- Limitations and future research needs

*) The research presented here draws on a variety of findings from different collaborations. In particular, I would like to thank Desta Fitiwi, Margeret Hall, Jason Harold, Marie Hyland, Muireann Lynch and Viktor Slednev.

Background and Motivation

- Greenhouse gas emissions need to be reduced globally to combat climate change \rightarrow defossilisation of the energy system
 - EU plans based on energy efficiency and renewables → significant investments required
- Citizens generally express acceptance of these investments on an abstract level, however, policy makers and planners are frequently met with resistance from local communities
- Exact reasons yet subject to research ("NIMBY" explanation widely acknowledged as far too simplistic)
- But: research does show that people's acceptance increases when setback distance is increased
- Impact of increased setback distance on available areas, system costs...?

RUHR UNIVERSITÄT

Background and Motivation (cont'd)

	Germany	Austria	Ireland	US
Min. setback distance	~400-1000m recommended, indiv. exceptions possible >1000m general min. discussed	>800-2000m	>500m >4*turbine height	<pre>>2,500 feet (Alabama), varying >1.5-2.5*turbine height depending on scale (Connecticut)</pre>

Handelsblatt

WINDENERGIE

Die Abstandsregelung für Windräder ist vom Tisch – zumindest vorerst

Im jüngsten Entwurf des Kohleausstiegsgesetzes ist Altmaiers 1000-Meter-Regel nicht mehr enthalten. Die Branche begrüßt den Sinneswandel.

Independent.ie♥

Government rolls out strict new wind turbine rules but keeps minimum 500m set back distance near homes

Chair of Energy Systems & Energy Economics

RUHR UNIVERSITÄT BOCHUM

RUR

Research Questions

- RQ1: Does increasing the setback distance help increase public acceptance of renewable energy developments and, if so, how much?
- RQ2: Since distance does is a 'proxy', what are the fundamental determinants of public acceptance of renewable energy developments and how do they affect people's preferences for proximity/distance?
- RQ3: What other effects does increasing setback distances have on the energy system?
 - Total system costs?
 - Lost load?
 - Renewable curtailment?
- RQ4: Would people's preferences remain unchanged if they knew about these consequences?

RUHR UNIVERSITÄT BOCHUM

۲

. . .

Multi-method approach

- Conduct surveys on nationally representative samples of the populations in Germany, Ireland, US and analyse stated preferences in a cross-country econometric analysis (N>4500)
 - Understand how setback distance relates to acceptance
 - Understand what actually drives people's preferences for spatial proximity for different renewable energy technologies
- Employ an energy system optimisation model, accounting for network effects (linearised AC-OPF), which are largely neglected in previous studies (Ireland only so far, Germany and US in progress)
 - Construct different renewable development scenarios (lower vs. higher spatial constraints representing higher vs. lower setback distance)
 - Determine techno-economic effects (e.g., costs, emissions, grid congestions)

Selected survey question items: dependent variables

- Asking respondents for assessment of minimum distance between new power generation technology and their place of residence so that they would accept the construction
- Response categories
 - 0-1 km/miles
 - 1-5 km/miles
 - > 5 km/miles
 - Reject regardless of distance

- Considered technologies
 - Wind power
 - Solar power
 - Biomass power plant
 - Coal-fired power plant
 - Gas-fired power plant

RUHR

BOCHUM

UNIVERSITÄT

Selected survey question items: independent variables

- External (socio-demographic)
 - Age, tenure type, education
- Internal (attitudes and beliefs)
 - Trade-offs between (energy) policy objectives
 - Pairwise trade-offs (9-point scale as AHP) between policy objectives: economic affordability, environmental sustainability, supply reliability and social impact
 - Technology-specific perceived impact assessments (subjective)
 - Perceived impact of technology on landscape, sound, health, local environment, local economy, local employment, air quality, water quality, odour, technical safety

RUHR UNIVERSITÄT

Scenarios considered using the optimisation model

Cases	Variations			
	Storage de- ployment	Wind onshore	Solar PV	Storage cost
Unconstrained Lower setback distance	Unlimited capacity	\leq 400 MW per transmission node	≤ 50 MW per transmission node	High Low
Constrained Higher setback distance	Limited capacity	\leq Peak demand at each transmis- sion node	\leq min {50 MW; Peak demand at each transmission node}	High Low

- RES-E 2030 target of 55% is assumed for all scenarios (2020 target was 40%)
- RES-E 2030 target of 70% considered as sensitivity (Irish Government's 2019 Climate Action Plan)

RUHR UNIVERSITÄT BOCHUM

DIIK

Results: descriptive statistics on setback distance (RQ1)

 \rightarrow Acceptance does increase with distance based on stated preferences

 0-1km/miles
 1-5km/miles

 >5km/miles
 Reject regardless of distance

RUHR UNIVERSITÄT BOCHUM

RUB

Results: econometric analysis of survey data (RQ2)

- Socio-demographic factors
 - German and Irish citizens are willing to accept energy infrastructure at smaller distances to their homes than their US counterparts
 - Exception of wind power: no statistically significant difference between Ireland and US
- Attitudinal factors shape people's preferences more consistently than any sociodemographic aspects
 - In particular, the economic-environmental trade-off is significant across technologies, people who rank economic concerns higher
 - less likely to accept RES technologies at close distances and more likely to reject regardless of distance
 - Technology-specific considerations: Perceived impact on landscape, health and local economy are significant factors for all technologies

Results: techno-economic effects of increasing setback distance (RQ3) Total costs / NPV

Constrained, High Storage Cost Unconstrained, Low Storage Cost

Constrained, Low Storage Cost

NPV of system costs: relative change compared to unconstrained case with high storage costs

Main effects:

- Unconstrained case only marginally cheaper than constrained case (3% cumulative NPV)
- Decreased storage costs
 reduce cumulative NPV of
 system costs by 1%

RUHR UNIVERSITÄT BOCHUM

Results: techno-economic effects of increasing setback distance (RQ3) Generation investments

Main effects:

- Ceteris paribus, increasing setback distance / constraining RES potential onshore leads to decreased wind onshore developments and increased solar PV and wind offshore developments
- Decreased storage costs reduce CCGT capacity required to cover demand

RUHR

BOCHUM

UNIVERSITÄT

Results: techno-economic effects of increasing setback distance (RQ3) Transmission grid congestions

RUHR UNIVERSITÄT BOCHUM **RU**B

Results: techno-economic effects of increasing setback distance (RQ3) Lost load and RES curtailment

Constrained, Low Storage Cost

Lost load: relative change compared to unconstrained case with high storage costs

RUHR

BOCHUM

UNIVERSITÄT

Chair of

Energy Systems &

neray Economics

19

Results: techno-economic effects of increasing setback distance (RQ3) Comparison of effects for higher RES-E targets

	SNSP level	75%	75%	90%
	RES-E Target	55%	70%	70%
Changes in investment (%)	New CCGT	-21	+56	-31
	Onshore wind	-40	-39	-39
	Solar PV	+62	-8	+14
	Offshore wind	+515	+58	+66
	Storage	-42	-2	-5
Changes in key system variables (%)	Expected emissions	0	0	0
	Expected RES curtailment	-14	-5	-13
	Expected self-sufficiency	+15	+6	+4
	Expected NPV	+3	+5	+5
	Case	RES-E 55	RES-E 70	RES-E 70 & SNSP 90

 \rightarrow Cost difference (NPV) between constrained and unconstrained case increases

Discussion and conclusion: socio-economic effects

- Respondents are indeed more accepting of renewable energy developments as setback distances increase
- People's preferences for spatial proximity between various energy technologies and their homes are driven by
 - trade-offs between national energy policy preferences
 - their technology-specific perceptions
 - to a lesser extent their socio-demographic characteristics

Discussion and conclusion: techno-economic effects

- The unconstrained portfolio is only marginally cheaper than the constrained one
- Substantial differences in the final generation portfolios
- Network reinforcement requirements greater under the unconstrained approach
- Lower storage costs only slightly mitigate the costs of capacity constraints but significantly alter the spatial distribution of generation investments
- Differential in costs between the unconstrained and constrained cases
 increases non-linearly with renewable generation targets
 - → Achieving very high renewable targets may be challenging, if not impossible, if setback distances are increased too much

Discussion and conclusion: policy implications

- Policy makers may choose to trade achieving RES-E targets off against arriving at the least-cost scenario
 - If a constrained roll-out of renewables helps overcome public opposition to high RES levels, the increase in total costs may be acceptable, from a policy-maker's point of view
 - Assessment and monitoring of expected cost (increase) very important given that increased energy prices for consumers may themselves prove a barrier to social acceptance

Limitations and future research needs

- Analysis based on stated preferences \rightarrow extent of alignment with actions unknown
- Independent variables not considered here: e.g., place attachment, trust, institutional structure and ownership type (affecting perceived procedural and distributional justice)
- "Exact" link between distance and costs (and other techno-economic effects) not yet operationalised
 - Distance to what? (e.g., 1000m to each individual house, group of at least 5 houses as discussed in Germany recently, impact of urban sprawl such as in Ireland...)
 - Limitations of quantitative modelling in general

Next steps

- Energy systems models for Germany and US for cross-country analysis
- RQ4: Iterative and "bidirectional" acceptance assessment
 - Interactive methods and tools needed for "mass online preference elicitation"

Research largely builds on three papers, 2 of which under review (R&R)

Fitiwi, D., Lynch, M. & Bertsch, V. (2019) Capacity-constrained Renewable Power Generation Development in Light of Storage Cost Uncertainty. ESRI Working Paper 647.

Harold, J., Bertsch, V., Lawrence, T. & Hall, M. (2018) Drivers of people's preferences for spatial proximity to energy infrastructure technologies: a cross-country analysis. ESRI Working Paper 583.

Slednev, V., Bertsch, V., Ruppert, M. & Fichtner, W. (2018) Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology. Computers & Operations Research 96, pp. 280-292.

RUHR UNIVERSITÄT BOCHUM

Literature

- Bertsch, Valentin, Hall, Margeret, Weinhardt, Christof, Fichtner, Wolf, 2016. Public acceptance and preferences related to renewable energy and grid expansion policy: empirical insights for Germany. Energy 114, 465–477.
- Bertsch, V., Hyland, M. & Mahony, M. (2017) What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland, Energy Policy, 106, pp. 472-497.
- Black, J. Stanley, Stern, Paul C., Elworth, Julie T., 1985. Personal and contextual influences on househould energy adaptations. J. Appl. Psychol. 70 (1), 3.
- Devine-Wright, Patrick, 2007. Reconsidering public attitudes and public acceptance of renewable energy technologies: a critical review. Working Paper 1.4, published by the School of Environment and Development, University of Manchester. Available at: (http://geography.exeter.ac.uk/beyond_nimbyism/deliverables/bn_wp1_4.pdf).
- Dietz, Thomas, Stern, Paul C., Guagnano, Gregory A., 1998. Social structural and social psychological bases of environmental concern. Environ. Behav. 30 (4), 450–471.
- Fishbein, Martin, Ajzen, Icek, 1975. Belief, attitude, intention, and behavior: An introduction to theory and research (Addison-Wesley).
- Guagnano, Gregory A., Stern, Paul C., Dietz, Thomas, 1995. Influences on attitude-behavior relationships a natural experiment with curbside recycling. Environ. Behav. 27 (5), 699–718.
- Harold, J., Bertsch, V., Lawrence, T. & Hall, M. (2018) Drivers of people's preferences for spatial proximity to energy infrastructure technologies: a crosscountry analysis. ESRI Working Paper.
- Mueller, C. E., Keil, S. I., & Bauer, C. (2017). Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony. Energy Policy, 111, 137-147.
- Slednev, V., Bertsch, V., Ruppert, M. & Fichtner, W. (2018) Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology. Computers & Operations Research 96, pp. 280-292.
- Stern, Paul C., Dietz, Thomas, Guagnano, Gregory A., 1995. The new ecological paradigm in social-psychological context. Environ. Behav. 27 (6), 723–743.
- Van der Horst, D. (2007). NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy policy, 35(5), 2705-2714.
- Warren, C. R., Lumsden, C., O'Dowd, S., & Birnie, R. V. (2005). 'Green on green': public perceptions of wind power in Scotland and Ireland. Journal of environmental planning and management, 48(6), 853-875.

Acknowledgements

- ESRI Energy Policy Research Centre, funded by DCCAE, ESB, Ervia, CER, EirGrid, Viridian/Energia, SSE Airtricity
- Sustainable Electrical Energy Systems cluster, funded by Science Foundation Ireland
- Energy Systems Integration Partnership Programme, funded by Science Foundation Ireland
- Collaborative Research of Decentralisation, Electrification, Communications and Economics, funded by Science Foundation Ireland, National Science Foundation (US) and Department for Employment and Learning (NI)
- Gas Innovation Group, funded by Gas Networks Ireland and Science Foundation Ireland

ervia

sse

Airtricitv

RUHR UNIVERSITÄT

BOCHUM

Chair o

neray Economics

Thank you very much for your attention!

Contact data:

Prof. Dr. Valentin Bertsch

Chair of Energy Systems & Energy Economics (EE) RUHR-UNIVERSITÄT BOCHUM

Building IC | 2nd Floor | Room 185 Universitätsstr. 150 | 44801 Bochum | Germany Phone: +49-(0)234-32-26357 Email: <u>valentin.bertsch@ee.rub.de</u> URL: <u>https://ee.rub.de/index-eng.html</u>

RUHR UNIVERSITÄT BOCHUM

